2018 Abstracts

Here you will find scientific abstracts from the 2018 BGRI Technical Workshop in Morocco. Hosted by ICARDA, the workshop featured over 400 participants from 51 countries.

Pathogenic diversity in Puccinia striiformis f. sp. tritici isolates from Pakistan

BGRI 2018 Poster Abstract
Javed Iqbal Mirza Crop Diseases Research Institute, PARC Substation, Murree Pakistan
Sufyan,Muhammad, Abid Majeed, Satti, Munir, Anjum, Fayyaz, Muhammad, Atiq ur Rehman, Rattu, Imtiaz, Muhammad

225 Puccinia striiformis f.sp. tritici isolates collected from wheat growing areas of Pakistan during 2013-2016 were analyzed using 18 near isogenic yellow rust differentials. Seventy eight races were identified among collection in which 20 were common (n > 2). Rest of the races were very rare and encountered only once (n=1). Races 574212, 574232, 474232, 474233, 574213 and 434232 were most frequent (n> 15). Pathogenic diversity analysis of the collection reveal high diversity (H =3.57) of the P. striiformis population of pakistan. On the basis of phenotypic response to yellow rust genes, the most frequent races could be grouped into 5 diverse groups. Distinct grouping was also observed in rarely encountered isolates. Most of the races were highly complex and 80% isolates had complexity ranging from 8 to 11. Virulence frequency for Yr6, Yr7, Yr8, Yr17, Yr27, Yr43 & YrExp2 remained above 80% while that of Yr1, Yr9 and Yr44 remained over 40%. Partial virulence was detected for Yr5, while virulence to Yr10, Yr15, YrSP was found in < 4% isolates. Paper discuss spatial and temporal distribution of P. striiformis races in Pakistan.

An ABA-induced sugar transporter gene TaSTP1 reinforces wheat susceptibility to Puccinia striiformis

BGRI 2018 Poster Abstract
Baoyu Huai State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling
Lijing Pang, Pu Yuan, Shoujun Hu, Jie Liu, Zhensheng Kang

Pathogens, whatever their types, develop at the expense of the nutrients generated by host and it is largely assumed that classical sources turn into sinks when colonized by pathogens. Sugar appears to be the major carbon and energy source transferred from the host to pathogens. Uptake, exchanges and competition for sugar, at biotrophic interfaces, are controlled by membrane transporters and their regulation patterns are essential in determining the outcome of plant-fungal interactions. However, mechanisms of transport and transporters involved in carbon partitioning between organisms are still poorly understood.

In this study, a wheat sugar transporter protein (STP) gene, TaSTP1, was cloned from a wheat-Puccinia striiformis f. sp. tritici (Pst) interaction cDNA library. Transcripts of TaSTP1 were up-regulated in wheat leaves that were infected by Pst or had experienced exogenous ABA and certain abiotic treatments. Heterologous mutant complementation in Saccharomyces cerevisiae revealed that TaSTP1 transports a broad-spectrum monosaccharides including glucose, fructose, mannose and galactose. Transient expression in Nicotiana benthamiana and Arabidopsis protoplasts suggested that TaSTP1 is localized in plasma membrane. Yeast two hybrid and bimolecular fluorescence complementation (BiFC) validated oligomerization of TaSTP1. Knocking down TaSTP1 using the barley stripe mosaic virus-induced gene silencing system reduced the susceptibility of wheat to the Pst virulent pathotype CYR31. Hyphal abnormality was significantly observed in VIGS plants. These results suggest that TaSTP1 may directly or indirectly participate in sugar transport in the wheat-Pst interactions and exert influence on suagr supply of Pst.

Wheat Improvement Program combat in context with global climate change

BGRI 2018 Poster Abstract
Makhdoom Hussain Wheat Research Institute, Faisalabad, Pakistan
Ghulam Mahboob Subhani, Javed Ahmad, Abid Mahmood

Global warming affects the environmental parameters of agro-based countries like temperature increase, melting of glaciers, floods, erratic rains, low temperature, frost and high temperature. As a result agriculture is becoming more vulnerable to global environmental shifts. In case of wheat, erratic or low rains badly affect the wheat crop of rainfed areas of the country along with high temperature at seedling or juvenile stage. Similarly, frost affects the early sown wheat crop in irrigated areas of Punjab. Lesser availability of irrigation water from water reservoirs also reduces the wheat crop productivity. Sudden increase in temperature (>30?C) during the month of March adversely affect the grain filling. High temperature during grain filling stage interferes with the photosynthetic activities of the plant due to enhanced maturity, grain become shriveled and results in low grain yield. The threat of these environmental changes can only be overcome through breeding with specific objectives which is cost effective once obtained.
Hence development of wheat varieties for frost, drought and heat tolerance is the only feasible solution to combat these stresses which is being used at Wheat Program of Ayub Agricultural Research Institute, Faisalabad, Pakistan. New emphasis is also being given to develop frost resistant wheat varieties due to changing scenario of last few years. The institute is actively involved for the development of heat, drought and frost tolerant wheat varieties. During working for tolerance against any of these stresses plant types to be breed are physiologically and morphologically modeled in such a way that they should be capable of tolerating respective stress. In addition to breeding work an extensive research is also being done at Wheat Research Institute, AARI., Faisalabad to investigate best agronomic strategies to make wheat crop best adapted to environmental stress conditions.

Genetic Improvement in Quality, Grain Yield and Yield Associated Traits of Durum wheat (Triticum turgidum var.durum L.) in Ethiopia

BGRI 2018 Poster Abstract
Mekuria Dejene Ethiopian Institute of Agricultural Research

Information about changes associated with advances in crop breeding is essential for understanding yield-limiting factors and developing new strategies for future breeding programmes. Thirty-six durum wheat varieties released since 1966 were evaluated in three replications of the Randomized Complete Design at Debre Zeit and Akaki, Ethiopia during the 2016 cropping season to estimate the amount of genetic gain made over time in grain yield potential, yield-associated traits and in protein content. Analysis of variance revealed significant differences among varieties for all 16 quantitative traits, protein content and protein harvest in Kg ha-1 at each of the locations. Grain yield varied between 1.66t ha-1 for Arendato released in 1966 to 3.90t ha-1 for Megenagna released in 2012 with mean of 2.952t ha-1 at Debre Zeit. At Akaki yield range was between 2.45 and 5.04t ha-1 with mean of 3.992t ha-1. 25 varieties surpassed Arendato (3.754t ha-1) at this location. In the combined ANOVA significant difference between the varieties was observed only for spike length, spikelets spike-1, grains spikelet, grains spike-1, plant height, days to flowering, thousand grain weight and hectoliter weight. Varieties specifically adapted to only one of the locations, widely adapted varieties and varieties not adapted to any of the locations were identified. Regression analysis revealed that grain yield has increased by 22kg ha-1 year-1 since 1966; an increase of 40.6% over yield in 1966. This was accompanied with a significant decline of 11.4% in spike length, 6.7% in spikelets spike-1, 17.9% in protein content and 31.2% in protein yield ha-1 and a significant increase of 41.1% in grains spikelet-1, 32.9% in number of grains spike-1, 22.3% in thousand grain weight, 17.8% in grain filling period, 23.9% in seed growth rate, 40.1% in grain yield production rate, 7.9% in harvest index.

Varietal performance of wheat varieties against rusts and its adoption in Nepal

BGRI 2018 Poster Abstract
Dhruba Bahadur Thapa Agriculture Botany Division, Nepal Agricultural Research Council
Baidya Nath,Mahto, Sarala, Sharma, Madan Raj, Bhatta, Mahesh, Subedi, Deepak, Pandey, Nutan Raj, Gautam, Suraj, Baidya, Roshan, Basnet, Rudra, Bhattarai, Ajaya, Karkee, Suk Bahadur, Gurung, Prem Bahadur, Magar, Sunita, Adhikari, Bhagarathi, Shahi, Basistha, Acharya

A total of 41 bread wheat (Triticum aestivum L.) varieties have been released so far in Nepal since 1960. Farmers have been gradually adopting newly released varieties due to disease and lodging resistance, better yield performance and good taste. In Nepal, wheat area coverage, production and productivity have been increased by almost seven, sixteen and two folds, respectively in the last 56 years. Performance of varieties varies from one region to another. Yellow rust is the major problems in hills while leaf rust is the primary issue on the plains. Stem rust is sporadic in localized areas of Nepal. Wheat research program in Nepal has released 9 wheat varieties resistant to Ug99 namely Vijaya, Tilottama, Banganga, Gaura, Dhaulagiri, Danphe, Sworgadwari, Munal and Chyakhura. Vijay, Tilottama and Banganga are also resistant to leaf rust while, Dhaulagiri, Danphe, Sworgadwari, Munal and Chyakhura are resistant to yellow rust. Since the release of Vijay, the first Ug99 resistant variety in Nepal during 2010, source seed production of rust resistant varieties has been increasing significantly each year with present coverage under these varieties being around 40%. WK 1204 has been occupied 35% area in hills of Nepal. Seed production and distribution of such high yielding disease resistant varieties through public-private partnership is leading to quality seed supply for varietal diversity and better food security in the country.

Race analysis of Puccinia striiformis f.sp. tritici in Iran-2017

BGRI 2018 Poster Abstract
Farzad Afshari Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.

Stripe rust of wheat, caused by Puccinia striiformis f. sp. trirtici (Pst) is an important disease in many parts of Iran. Over last two decades several epidemics have occurred in Iran causing the breakdown of widely utilized sources of resistance in wheat cultivars. Fifty isolates were collected from different parts of Iran during 2017. Eight isolates of Pst. from 2017 have been processed to date for race analysis. Infection types were assessed on a 0-9 scale 16 and 18 days after inoculation using a scale similar to that described by McNeal et al. (1971). Infection types (ITs) 7 to 9 were regarded as virulent (susceptible) and lower than 7 were avirulent. Pathotypes 102E158A+,Yr27; 6E158A+,Yr27; 102E158A+,Yr27; 166E154A+,Yr27; 38E174A+; 38E158A+,Yr27; 238E190A+,Yr27 and 38E190A+,Yr27 were identified. Pathotype 238E190A+,Yr27+ (from West of Iran) was more aggressive during this study. Plants with Yr1, Yr4, Yr5, Yr10, Yr15, Yr24 and YrSP were resistant to all pathotypes. Pathotypes with virulence on plant with gene/s Yr2, Yr6, Yr7, Yr8, Yr9, Yr25, Yr26, Yr27, Yr32, YrSD, YrSU, YrND and YrA were more common. Seedling tests of Iranian wheat cultivars to race 238E190A+,Yr27+ showed that the new released cultivars that included Parsi, Baharan, Bahar, Pishgam, Zareh, Urom, Maihan, Dena, Haydarei and Shabrang were resistant to the new aggressive race with virulence on plants with Yr27.

Race analysis of Puccinia graminis f. sp. tritici led to identification of the new race TTKTK, affecting Sr31 and SrTmp, in Iran

BGRI 2018 Poster Abstract
Ramin Roohparvar Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
Ali Omrani

The basidiomycetous fungus, Puccinia graminis f. sp. tritici (Pgt) causes stem rust disease as one of the most destructive wheat pathogens, worldwide. TTKSK and other Pgt races under Ug99 race group are considered as major threats to wheat production in east Africa and CWANA region by defeating the stem rust resistance gene Sr31, while its ineffectiveness was reported in Iran in 2007. Race TKTTF of Pgt caused a severe stem rust epidemic in southern Ethiopia in 2013, and was spread to Europe through 2016 Sicily outbreak. This research describes race identification of Iranian isolates collected during the widespread distribution of stem rust in 2014-16. Purified urediniospores of 123 Pgt isolates were separately inoculated on seedlings of 20 North American differential wheat cultivars carrying different Sr resistance gene/s. Infection types were recorded at 14 days post inoculation (dpi) using Stakman et al. 0-4 scale. Based on the letter code nomenclature, we identified the Pgt races TKTTF, TTTTF, TTKSK, TTKTK, PKTTF, TKSTF, PKSTF, PKTTC, PTRTF, PTTTF, PKSTC, TTRTF, TKSTC and PKRTF in Iran. TKTTF and TTTTF were determined as prevalent Iranian Pgt races. This is the first report of race TTKTK, a new variant of Ug99 race group with virulence on Sr31 and SrTmp resistance genes, in Iran. Since TTKTK primarily occurred in south west of Iran, the migration route for this new race seems to be similar to race TTKSK. The high race variation observed in this study could indicate a high genetic diversity among P. graminis f. sp. tritici populations in Iran, as a wheat center of origin.

Marker assisted backcross breeding for incorporation of rust resistance in Indian wheat varieties

BGRI 2018 Poster Abstract
Chandra Nath Mishra ICAR Indian Institute of Wheat and Barley Research, Karnal
Satish Kumar, Rekha Malik, Garima Singhroha, Vinod Tiwari, Gyanendra Pratap Singh

Breeding rust resistant cultivars using conventional methods is time-consuming, complex and slow, but molecular markers offer a rapid alternative for developing cultivars with improved disease resistance. Three wheat cultivars, DBW88, DBW107, and DBW110, from different production zones were used as recipients for incorporation of resistance genes using a marker-assisted backcross (MAB) breeding approach. Leaf rust resistance gene Lr32 is being incorporated into all the three varieties, stripe rust resistance gene Yr15 is being incorporated into DBW88 and DBW107, and stem rust resistance gene Sr26 is being added to variety DBW110. Lines PBW703 (Yr15), FLW15 (Lr32) and Avocet (Sr26) were used as donors. Six cross combinations viz., DBW88/PBW703, DBW107/PBW703, DBW88/FLW15, DBW107/FLW15, DBW110/FLW15 and DBW110/Sr26 were made at Karnal during 2015-16 and the crosses were grown at IIWBR-RS, Dalang Maidan for backcrossing. BC1F1 plants were raised at Karnal during 2016-17. Both foreground and background selections were practiced in each combination. SSR markers gwm264 and barc135 were used for foreground selection of Lr32, marker barc8 was used for selection of Yr15, and markers Sr26#43 and BE518379 were used to detect presence and absence of Sr26. From 90 to 127 polymorphic SSR markers chosen for each cross from an initial set of 800 screened on the parents are being used for background selection.

Virulence to Yr10 and Yr24 in Mexican yellow rust fungal population and implications for CIMMYT durum and bread wheat germplasm

BGRI 2018 Poster Abstract
Julio Huerta-Espino INIFAP, Mexico
Ravi Singh, Karim Ammar

Stripe rust, caused by Puccinia striiformis tritici (Pst), continues its evolution towards virulence to race-specific resistance genes. Identification of Mexican Pst isolates MEX16-03 and MEX16.04 that changed infection types of Yr10 testers from 1 to 9 and for Yr24 (=Yr26) testers from 3 to 9 indicated that a mutation for virulence to these resistance genes has occurred in a predominant race detected in 2014 and maintained at CIMMYT as MEX14.191 and at INIFAP as CMEX14.25. Isolate MEX14.191 was responsible for the susceptibility of popular varieties Nana F2007 and Luminaria F2014 grown in central Mexican highlands. Isolate MEX16.04 has the following avirulence/virulence formula: Yr1, 5, 15, SP/Yr2, 3, 6, 7, 8, 9, 10, (17), 24, 26, 27, 28, 31, 32 using the Avocet near-isolines and other known testers. Virulence to Yr10 and Yr24 (=Yr26) were also confirmed by testing seedlings of cultivars Moro (Yr10), Chuanmai 42, and Neimai 836 (Yr24). Seedling tests carried on 200 bread wheat, 550 durum, and 460 synthetic hexaploid wheats with their respective durum parents from CIMMYT collection indicated that MEX16.03 and MEX16.04 do not represent a major threat because a majority of the lines remained resistant to these isolates. However, it is worth mentioning that durum cultivars, such as Khofa, Desert King, Anatoly, Movas, and Llareta INIA, and 10 primary synthetic hexaploid or synthetic-derived bread wheats that were resistant to MEX14.191 became susceptible to MEX16.03 and MEX16.04. Our results indicate that resistance gene Yr10 was absent and Yr24 occurred in low frequency in CIMMYT bread wheat germplasm. A majority of CIMMYT durum wheat possibly carried Yr24 in combination with other effective gene(s).

GENETIC MAPPING OF SEEDLING AND ADULT PLANT RESISTANCE FOR STRIPE RUST IN SPRING BREAD WHEAT (TRITICUM AESTIVUM L.)

BGRI 2018 Poster Abstract
Yewubdar Isehtu Ethiopian Institute of Agricultural Research (EIAR)

Stripe rust caused by Puccinia striiformis f.sp.tritici, is one of the major diseases of wheat in the world. Experiments were carried out at two sites in Ethiopia (Kulumsa and Meraro) during the 2015 cropping season to evaluate the response of 198 elite bread wheat genotypes and two checks to the prevailing races of stripe rust at adult plant and seedling stage. The genetic profile of these genotypes was assessed using 13006 SNP markers and an association mapping was explored to determine marker?trait association. About 72.5% and 42.5% of the lines exhibited resistance at Kulumsa and Meraro, respectively. Out of 198 genotypes tested in the greenhouse, 31% exhibited common resistance for Kubsa and mixed stripe rust isolate. Only 8966 of the SNPs were polymorphic, only these were used for association mapping analysis. These markers spanned an average density of 3.47 cM per marker, with the poorest density on the D genome. Almost half of these markers were on known chromosomes, but had no position on the consensus map of bread wheat. Analysis of population structure revealed the existence of three clusters and the estimated genomic wide Linkage Disequilibrium (LD) decay in this study ranged from 0 to 50 cM. 53 SNPs in ten genomic regions located on wheat chromosome 1AL, 2AL, 2BL, 2DL, 3BL, 4BL, 4DL, 5AS, 7AL and 7BL were identified. Thirty nine SNP markers in five genomic regions at Kulumsa and 14 SNP markers in six genomic regions at Meraro explained more than 25.5% and 35.1% of phenotypic variability respectively. For seedling stage, 21 markers in ten genomic regions located on wheat chromosomes 1B, 2A, 2B, 3A, 3B, 4B, 4D, 5A, 6B and 7B were associated with resistant. These loci may be useful for choosing parents and incorporating new resistance genes into locally adapted cultivars.

Varietal performance of wheat varieties against rusts and its adoption in Nepal

BGRI 2018 Poster Abstract
Dhruba Bahadur Thapa Agriculture Botany Division, Nepal Agricultural Research Council
Baidya Nath,Mahto, Sarala, Sharma, Madan Raj, Bhatta, Mahesh, Subedi, Deepak, Pandey, Nutan Raj, Gautam, Suraj, Baidya, Roshan, Basnet, Rudra, Bhattarai, Ajaya, Karkee, Suk Bahadur, Gurung, Prem Bahadur, Magar, Sunita, Adhikari, Bhagarathi, Shahi, Basistha, Acharya

A total of 41 bread wheat (Triticum aestivum L.) varieties have been released so far in Nepal since 1960. Farmers have been gradually adopting newly released varieties due to disease and lodging resistance, better yield performance and good taste. In Nepal, wheat area coverage, production and productivity have been increased by almost seven, sixteen and two folds, respectively in the last 56 years. Performance of varieties varies from one region to another. Yellow rust is the major problems in hills while leaf rust is the primary issue on the plains. Stem rust is sporadic in localized areas of Nepal. Wheat research program in Nepal has released 9 wheat varieties resistant to Ug99 namely Vijaya, Tilottama, Banganga, Gaura, Dhaulagiri, Danphe, Sworgadwari, Munal and Chyakhura. Vijay, Tilottama and Banganga are also resistant to leaf rust while, Dhaulagiri, Danphe, Sworgadwari, Munal and Chyakhura are resistant to yellow rust. Since the release of Vijay, the first Ug99 resistant variety in Nepal during 2010, source seed production of rust resistant varieties has been increasing significantly each year with present coverage under these varieties being around 40%. WK 1204 has been occupied 35% area in hills of Nepal. Seed production and distribution of such high yielding disease resistant varieties through public-private partnership is leading to quality seed supply for varietal diversity and better food security in the country.

Large scale wheat stem rust outbreaks in Western Siberia / Northern Kazakhstan in 2015-2017

BGRI 2018 Poster Abstract
Vladimir Shamanin Omsk State Agricultural University, Omsk, Russia
Elena Salina, Yuriy Zelenskiy, Alma Kokhmetova, Mehran Patpour, Mogens Hovmøller, Pablo Olivera, Les Szabo, Yue Jin, Marcel Meyer, Chris Gilligan, Matthew Hort, Dave Hodson, Alexey Morgunov

Short season, high latitude spring wheat is grown on 7 million ha in Western Siberia and 10 million ha in Northern Kazakhstan. Despite relatively low wheat yields (1.5 t/ha), the region is extremely important for regional and global food security. Leaf rust dominates, occurring three years out of five, especially in favorable years with higher rainfall. Since 2010, stem rust has been observed at an increasing number of sites. The first large-scale stem rust outbreak occurred in 2015 and affected about 0.5-1 million ha in Omsk, Western Siberia. In 2016, 2 million ha were affected in the Omsk and Altay regions, while 1 million ha in the Kostanay and Northern Kazakhstan regions were affected in 2017. Estimated yield losses reached 25-35% each year. Factors associated with the outbreaks included: higher rainfall in late June and July; cultivation of susceptible varieties; and an increased area planted to winter wheat, which serves as a source of inoculum. Sampling and race analysis revealed a diverse pathogen population, indicative of a sexual recombination. A total of 51 races were identified from 31 samples taken in 2015 and 2016. All races were avirulent on Sr31. The majority of varieties released and cultivated in the region are susceptible to stem rust and require replacing. A recent study of 150 local resistant varieties and breeding lines indicated that the genetic basis of resistance was limited to Sr25, Sr31, Sr36, Sr6Ai, Sr6Ai#2, and additional unknown major genes. Adult-plant resistance to stem rust was observed in less than 20% of the germplasm. The potential impact of these large stem rust outbreaks on other wheat growing regions is being investigated by analyzing spore wind dispersal patterns. Further research is required to understand and mitigate the sudden appearance of stem rust as a disease of economic importance.

Study at Omsk State Agrarian University was supported by the Russian Science Foundation (project No. 16-16-10005).

Impact of stem rust infection on grain yield of selected wheat cultivars in Egypt

BGRI 2018 Poster Abstract
Osama Abd El Badia Wheat Disease Research Department
Mohamed Abdalla, Sobhy Negm, Adel Hagras

This work was carried out to study the response of five bread and two durum wheat cultivars to stem rust and its effect on grain yield under field conditions at Sids and Beni Sweif stations during the three growing seasons 2011/2012, 2012/2013 and 2013/2014. The loss in grain yield and kernel weight of the different wheat genotypes was variable according to the varietal response. Grain yield and kernel weight of the protected plots (protected by the effective fungicide Sumi-eight 5EC(CE)-1-(2,4-dichlorophenyl)1-4,4-dimethyl1-2-(1,2,4-triazol-y1)Pent -1-en -3-0L) at the rate of 70cm /200litter water per Fadden ) of all wheat genotypes were higher than the infected ones. Significant differences were found between infected and protected wheat genotypes.. Disease severity was recorded weekly to estimate area under disease progress curve (AUDPC). The AUDPC ranged from 85.33 to 405.00 (Sids 1 and Sohag 3) during 2011/2012, from 181.66 to 805.00 (Shandwel 1 and Sohag 3) during 2012/2013, and from 142.33 to 585.00 (Shandwel 1 and Sohag 3) during 2013/2014. Losses in kernel weight ranged from 3.39% to 31.03% (Sids 1 and Misr 1) during 2011/2012, from 9.79% to 44.18% (Sids 1 and Sohag 3) during 2012/2013,and from 5.67% to 26.86% (Sids 1 and Sohag 3) during 2013/2014. Yield losses ranged from 5.70% to 37.52% (Shandwel 1 and Misr 1) during 2011/2012, from 7.75% to 45.78% (Shandwel 1 and Misr 1) during 2012/2013, and from 7.14% to 30.59% (Sids 1 and Sohag 3) during 2013/2014. Yield losses correlated strongly with AUDPC. The results of this study indicate that bread wheat cultivars are (Giza 168,Sakha 93, Sids 1, Misr 1, Misr 2 and Shandwel 1) and Durum wheat are ( Beni Sweif 5 and Sohag 3) more tolerant than durum wheat cultivars. The Egyptian bread wheat cultivars Sids 1 and Shandawel 1 are more tolerant than the other bread wheat cultivars.

Stem rust resistance in durum wheat

BGRI 2018 Poster Abstract
Pablo Olivera University of Minnesota
Ayele Badebo, Worku Bulbula, Matthew Rouse, Yue Jin

Our research objective is to identify new resistance genes in durum wheat that are effective against TTKSK and other significant stem rust pathogen races that could be utilized in durum breeding. We characterized 8,000 accessions for stem rust response in the field (Debre Zeit, Ethiopia, and St. Paul, MN). Accessions with resistant to moderately resistant responses in multiple field evaluations were evaluated at the seedling stage for resistance to races TTKSK, TRTTF, TTTTF, JRCQC, TKTTF, and six representative U.S. races. We identified 438 durum accessions resistant to moderately resistant in all field evaluations. Among the field-resistant accessions, 273 were resistant to all races used in seedling evaluations. Accessions susceptible at the seedling stage are being evaluated for the presence of adult plant resistance genes. The highest frequencies of resistant lines include landraces from East and North Africa (Ethiopia and Egypt) and advanced breeding lines and cultivars from North America (Mexico and USA). DNA markers will be performed to identify the presence of durum stem rust resistance genes, including Sr13, Sr8155B1, Sr11, and Sr8a. Nineteen resistant accessions were selected to investigate the genetics of TTKSK and TRTTF resistance. Results from evaluating F2 and F2:3 generations from biparental crosses revealed that resistance to race TTKSK was conferred mostly by one or two genes with dominant and recessive actions. Additional resistance genes were identified when populations were evaluated against race TRTTF. A bulk segregant analysis approach is being used to map the resistance in selected lines using the 90K SNP platform.

Development of bread wheat cultivars for resistance to stem rust for cultivation in north zone of Iran

BGRI 2018 Poster Abstract
Manoochehr Khodarahmi Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
Kamal Shahbazi, Jabbar Alt Jafarby, Mohammad Sadegh Khavarinejad, Farzad Afshari, Farshad Bakhtiar, Habibollah Soghi

In this project to obtain resistant wheat breeding lines/cultivars to stem rust disease, new cultivars and lines of the north breeding program were evaluated in greenhouse with races collected in 2014 from northern regions of Iran, Moghan and Gorgan. Artificial inoculation in greenhouse indicated none of the races had virulence on Sr11, Sr13, Sr24, Sr25, Sr26, Sr27, Sr29, Sr31, Sr32, Sr33, Sr37, Sr39, Sr40, and SrTmp. In order to evaluate seedling resistance, 143 wheat cultivars and new lines under greenhouse conditions were inoculated with four isolates of stem rust in four separate experiments in a randomized complete block design with three replications. Evaluation of the northern germplasm under greenhouse conditions showed that some of the genotypes were resistant against all four isolates. The resistance of some of these new lines was also confirmed in Kenya. Regarding other desirable agronomic characteristics, some of these lines will be introduced as new cultivars in the northern region of Iran.

On-farm seed production through Edget farmers' seed multiplier and marketing cooperative union: Practices and lessons from Basic

BGRI 2018 Poster Abstract
Fikre Handoro Hawassa Agriculture Research Centre
Agdew Bekele, Waga Mazengia, Shimekt Maru

Shortage of seed of rust resistant varieties is a challenge of small holder farmers in wheat production. To successfully address this issue, one of the essential elements in wheat production system is farmer’s access to quality seed of improved varieties. This paper presents the experience of on-farm basic and pre-basic seed production of newly released rust resistant wheat varieties. For the first time in the country, On-Farm basic and pre-basic seed production of wheat varieties was carried out in two districts/woredas (Silti and Soddo) of two specific locations (Loke faka and Wacho) where the Edget Farmers’ Seed Multiplier and Marketing Union was licensed to produce some crop varieties (cereals and pulse), beginning in the 2011/2012 cropping season. Model farmers from primary cooperatives were selected based on the past experience they had with the union in producing certified seed. Selected farmers and relevant experts were trained on how earh seed of wheat is produced. Accordingly seed multiplication of four wheat varieties was conducted with frequent monitoring and evaluation at the course of multiplication.
As a result sufficient and quality basic seed of newly released wheat varieties was produced on-farm in both Loke and Wacho locations for own utilization and seed market. The result of the experiment revealed that it was possible to multiply quality wheat seed provided that partnership (with GOs and/or NGOs) is well-built and cooperative farmers do farm management practices as per the recommendations. On-farm seed production can be sustainable if the strong partnership exists among stakeholders, and wheat seed growers are given premium prices for their seed which is supported by the legal frame work that encourages the seed production of early generations. More importantly, the result of this experiment has a useful implication on government policies and strategies and government institutions’ practice on farm early seed generation production and marketing.

Genetics of stem rust resistance in South African winter wheat varieties

BGRI 2018 Poster Abstract
Martin Chemonges University of the Free State
Liezel Herselman, Botma Visser, Willem Boshoff, Zacharias Pretorius

Most South African winter wheat varieties display all stage resistance (ASR) to stem rust caused by Puccinia graminis f. sp. tritici (Pgt). To study inheritance, four resistant varieties were crossed to a susceptible parent (Line 37) and F2 populations were phenotyped at the seedling stage with stem rust race PTKST (Ug99 lineage). Populations derived from varieties Koonap, Komati, Limpopo and SST 387 segregated in a 3:1 ratio, indicating that a single, dominant gene confers resistance in each population. Assessment of F2 seedlings of four intercrosses between these varieties failed to deliver susceptible segregants therefore suggesting that they carry the same resistance gene. Genotyping of F2 plants with microsatellite markers produced consistent linkage of resistance with markers on chromosome 6DS. Experiments are underway to determine the relationship between resistance in the four winter wheat varieties and resistance genes Sr42, SrCad and SrTmp, all located on 6DS. Current evidence shows that ASR in the South African winter wheat varieties Koonap, Komati, Limpopo and SST 387 is based on a single gene and thus vulnerable to pathogenic adaptation in Pgt.

Easy method to select plants with two effective leaf rust resistance genes from wheat hybrid populations

BGRI 2018 Poster Abstract
Lev Tyryshkin All-Russian Institute of Plant Genetic Resources

Wheat varieties with single effective gene for leaf rust resistance often quickly become susceptible because of multiplication of virulent Puccinia triticina genotypes. One of the methods to elongate term of effectiveness is to combine two genes in host genotype. To note, it is impossible to distinguish phenotypically plants or families having one or two genes in hybrid populations; the only method is to use PCR producing DNA markers linked to each gene for resistance. It is not convenient when necessary to analyze thousands plants or especially families of crosses between carriers of certain genes. At inoculation of wheat seedlings having Lr 9, 19, 24, 47, 29 and Sp with rust population from North-West region of Russian Federation all of them were absolutely resistant, so these genes may be considered to be effective in this region. Rust population was multiplied on cv. Leningradka leaf segments placed on cotton wool wetted with solution of maleic acid hidrazide (10 mg/l) + potassium chloride (0.48 g/l) +monosubstituted sodium phosphate (0.66 g/l) and used to infect seedling of the lines constantly poured with the solution. Rare pustules were recorded on each line. Isolates from the line were combined, multiplied and used to infect the lines set. Interaction specificity was shown for carriers of certain genes for resistance and inoculums. We propose to infect seedlings of hybrid wheat populations with mixtures of isolates virulent to first gene and those virulent to second one at use of above-mentioned method to multiply rust and grow plants. Seedlings resistant to that inoculum have both genes for resistance. If we have F3 or later families it is possible to use original population without selection of virulent isolates; in this case the method allowed removing progenies of heterozygous plants. With this approach we developed lines possessing combinations of Lr9+Lr24 and Lr9+Lr47 genes

Suitability of planting time to get iron and zinc enriched wheat varieties

BGRI 2018 Poster Abstract
Sadaf Shamim Cereal Laboratory, Wheat Research Institute, Faisalabad, Punjab, Pakistan
Hira Shair, Anjum Javed, Muhammad Abdullah, Makhdoom Hussain, Javed Ahmed

Globally, more than two billion people are undernourished in the world and deficient in key vitamins and minerals, making it the world’s greatest health risk factor. Among these, iron and zinc are of greater significance from human nutrition perspective, ranking them 5th and 6th in developing countries. The population most vulnerable to these micronutrient deficiencies is women and children. Iron deficiency results about 1.62 billion people as anemic, largely preschool children (47%). It is responsible for approximately 20854 deaths and two million disability adjusted life years (DALYs) among children under five years old, whereas, zinc deficiency is responsible for approximately 4% of deaths and 16 million DALYs, among children under age five. This leads to malnutrition ultimately leading to a disabled society.
Widespread accessibility of these nutrients is the solution to cater malnutrition. Wheat, the “staff of life,” consumed by masses can help eradicate “hidden hunger.” For this, fortification and bio-fortification are highly talked about, but one having limitations in reaching the masses and other a long term intervention, respectively, suitability of planting times to screen out varieties high in zinc and iron, is an on-field solution. In a study, wheat varieties; Punjab-11, Millat-11 and Galaxy-13 were selected from three planting times, with an interval of one month. Results reveal varieties exhibited their natural genotypic response but planting time impact on Zn and Fe were visibly significant. 30th December gave higher contents of Fe and Zn as compared to previous planting dates of the same year. Iron on an overall basis ranged from (135.0-147.0) ppm, while Zinc gave a confined range of (30.2-33.2) ppm. Thus, concluded that comparatively delayed sowing favours the mineral content concentration in wheat grains. And these creamed out varieties can readily be used in crosses with high yielding varieties, in order to make our wheat mineral sufficient.

On-farm seed production through Edget farmers' seed multiplier and marketing cooperative union: Practices and lessons from Basic

BGRI 2018 Poster Abstract
Fikre Handoro Hawassa Agriculture Research Centre
Agdew Bekele, Waga Mazengia, Shimekt Maru

Shortage of seed of rust resistant varieties is a challenge of small holder farmers in wheat production. To successfully address this issue, one of the essential elements in wheat production system is farmer’s access to quality seed of improved varieties. This paper presents the experience of on-farm basic and pre-basic seed production of newly released rust resistant wheat varieties. For the first time in the country, On-Farm basic and pre-basic seed production of wheat varieties was carried out in two districts/woredas (Silti and Soddo) of two specific locations (Loke faka and Wacho) where the Edget Farmers’ Seed Multiplier and Marketing Union was licensed to produce some crop varieties (cereals and pulse), beginning in the 2011/2012 cropping season. Model farmers from primary cooperatives were selected based on the past experience they had with the union in producing certified seed. Selected farmers and relevant experts were trained on how earh seed of wheat is produced. Accordingly seed multiplication of four wheat varieties was conducted with frequent monitoring and evaluation at the course of multiplication.
As a result sufficient and quality basic seed of newly released wheat varieties was produced on-farm in both Loke and Wacho locations for own utilization and seed market. The result of the experiment revealed that it was possible to multiply quality wheat seed provided that partnership (with GOs and/or NGOs) is well-built and cooperative farmers do farm management practices as per the recommendations. On-farm seed production can be sustainable if the strong partnership exists among stakeholders, and wheat seed growers are given premium prices for their seed which is supported by the legal frame work that encourages the seed production of early generations. More importantly, the result of this experiment has a useful implication on government policies and strategies and government institutions’ practice on farm early seed generation production and marketing.

Gone with the wind: Revisiting stem rust dispersal between southern Africa and Australia

BGRI 2018 Poster Abstract
Botma Visser Department of Plant Sciences, University of the Free State, South Africa
Marcel Meyer, Robert Park, Christopher Gilligan, Laura Burgin, Matthew Hort, David Hodson, Zacharias Pretorius

Despite being 10,000 km apart, the current study emphasizes the potential vulnerability of Australia to wind-borne Puccinia graminis f. sp. tritici (Pgt) spore introductions from southern Africa. Of four Pgt introductions into Australia since 1925, at least two (races 326-1,2,3,5,6 and 194-1,2,3,5,6) are thought to have originated from southern Africa. Microsatellite analysis of 29 Australian and South African Pgt races confirmed close genetic relationships between the majority of races in these two geographically separated populations, thus supporting previously reported phenotypic similarities. Using Lagrangian Particle Dispersion Model simulations with finely-resolved global meteorological data over a 14-year period and a three-day urediniospore survival time, the study showed that long distance dispersal of Pgt from southern Africa to Australia is possible, albeit rare. Transmission events occurred most frequently from central South Africa, but were also possible from southern South Africa and Zimbabwe; while none occurred from a representative source-location in Tanzania. Direct dispersal incursions into both the western and eastern Australian wheat belts were feasible. Together, the genetic and simulation data strongly support the hypothesis that earlier introductions of Pgt into Australia occurred through long-distance wind-dispersal across the Indian Ocean. The study thus acts as a warning of possible future Pgt dispersal events to Australia which could include members of the Ug99 race group. This emphasizes the continued need for Pgt surveillance on both continents.

Functional genomics of thermal stress tolerance in Indian wheat

BGRI 2018 Poster Abstract
Paramjit Khurana University of Delhi South Campus, New Delhi

Towards understanding the molecular mechanisms of heat stress tolerance, we have analyzed heat stressed substractive cDNA libraries and undertaken genome-wide transcriptome exploration for genes associated with spike photosynthetic efficiency during thermal stress. The photosynthetic efficiencies of Aegilops tauschii and Ae. speltoides were also compared. While the former displayed nearly complete recovery of PSII, the adverse effect was more pronounced in the latter. Functional characterization of heat stress-associated transcription factors and thermal stress-associated proteins was also undertaken e.g. TaHSF, TabZIP, TaZnF and TaMIPS, and TaLTPs in the Indian wheat germplasm. Functional characterization of the three heat stress transcription factors was upregulated under high temperatures and other abiotic stresses. They also showed early flowering and better performance with respect to their growth and yield after heat stress. Additionally, we have identified various interacting components associated with thermal stress-mediated plant signaling partners during thermal stress.

Durable and High Level Stripe Rust Resistance in Wheat Cultivar Madsen Conferred by Five QTL for All-stage or HTAP Resistance

BGRI 2018 Poster Abstract
Xianming Chen USDA-ARS, Pullman, WA, USA
Lu Liu, Meinan Wang, Junyan Feng, Deven See, Shiaoman Chao

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is the most destructive disease of wheat in the US Pacific Northwest. Durable high-temperature adult-plant (HTAP) resistance to stripe rust has been emphasized for breeding wheat cultivars and the resistance level has been gradually increased since the early 1960s. Wheat cultivar Madsen has been widely grown, intensively used in breeding programs, and has exhibited durable and high level resistance to stripe rust since its release in 1988. To map its resistance genes and determine the genetic basis of durable and high-level of resistance, Madsen was crossed with susceptible cultivar Avocet S, and 156 recombinant inbred lines (RILs) were developed. The RILs and parents were tested with races PSTv-37 and PSTv-40 in seedling stage at low temperatures in the greenhouse and in adult-plant stage in the fields of Pullman and Mount Vernon, WA in 2015 and 2016 under natural infection of the pathogen. The RILs were genotyped with single-nucleotide polymorphism (SNP) markers derived from genotyping by sequencing and the 90K Illumina iSelect wheat SNP chip. A linkage map was constructed with 1,348 SNP loci. QTL analysis identified three genes for all-stage resistance on chromosomes 1AS (QYrMad.wgp-1AS), 1BS (QYrMad.wgp-1BS), and 2AS (QYrMad.wgp-2AS); and two QTL for HTAP resistance on 3B (QYrMad.wgp-3B) and 6B (QYrMad.wgp-6B). QYrMad.wgp-2AS was the most significant QTL, explaining 16.03-71.23% phenotypic variation depending upon the race or environment, followed by QYrMad.wgp-6B that was consistently detected in all field experiments and explained 6.7-35.9% of the phenotypic variations. Based on the chromosomal locations and the results from other studies, QYrMad.wgp-2AS contains Yr17 and a HTAP resistance QTL, and QYrMad.wgp-1AS is a new QTL. The interactions among these QTL were mostly additive. The combination of the five QTL for different types of resistance provides the durable and high level resistance to stripe rust.

Virulence diversity of wheat stem rust (Puccinia graminis f.sp. tritici) in Ethiopia in 2016 main cropping season

BGRI 2018 Poster Abstract
Endale Hailu Abera Ethiopian institute of agricultural research
Dr. Netsanet B. Heyi, Dr. Getaneh W. Wolderufael, Tsegab T.

Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) is a major production constraint in most wheat growing areas of Ethiopia. The stem rust pathogen is capable of rapidly developing new virulence to resistance genes. The highlands of Ethiopia are considered a hot spot for Pgt diversity. The present study was conducted to investigate the virulence diversity and spatial distribution of races of Pgt in the major wheat growing areas of Ethiopia. The physiologic races of Pgt were determined on seedlings of the standard wheat stem rust differentials following the international system of nomenclature. Stem rust race analyses were carried out both at Ambo Plant Protection Center and the Cereal Disease Laboratory in Minnesota. 426 stem rust samples were collected from major wheat growing of the country in the 2016 cropping season and 185 viable samples were analyzed. Stem rust races TKTTF, TTKSK, TTTTF, JRCQC and RRTTF were identified. Among the identified races, TKTTTF was dominant at a frequency of 78.7% followed by TTKSK (10.6%). Race TTTTF was found for the first time in Ethiopia in 2016. Only one resistance gene in the differential set, Sr24, was effective against all isolates. Stem rust resistance gene Sr31 was found to confer resistance to most of the races prevalent in Ethiopia with the exception of Ug99. Sr24 could be used in combination with other resistance genes in breeding for resistance to stem rust in Ethiopia.

Myo-inositol phosphate synthase as a molecular switch influencing plant growth and immunity via ethylene and brassinosteroid

BGRI 2018 Poster Abstract
Naveen Sharma Department of Plant Molecular Biology, University of Delhi South Campus
Paramjit Khurana

L-myo-inositol phosphate synthase (MIPS; EC 5.5.1.4) have been involved in abiotic stress tolerance and its disruption leads to spontaneous cell death and enhanced tolerance to pathogen. However, its molecular mechanism underlying role of MIPS in growth, immunity and abiotic stress tolerance remains unknown. To delve deeper into the conserved molecular mechanism of MIPS action during growth and stress condition, we characterized the overexpression transgenic of TaMIPS and mutant lines of AtMIPS1. Subsequent, transcriptome analysis revealed the activation of ET/JA dependent immune response in transgenic and SA defense response in mutant. Pull-down analysis revealed the interaction of TaMIPS2 with ethylene synthesis (ACO) and signaling protein (CTR1) component. Due to the established role of ethylene during the skotomorphogenesis, we investigated the effect of myo-inositol phosphate synthase role in ethylene response during hook formation. Our results thus suggest the requirement of MIPS for ethylene response and regulating the growth and immunity.

Exploring genotypic variation and assessment of stress selection indices for some productive traits in bread wheat

BGRI 2018 Poster Abstract
Muhammad Ishaq Cereal Crops Research Institute (CCRI), Pirsabak Nowshera Khyber Pakhtunkhwa-Pakistan
Gulzar,Ahmad, Imtiaz, Muhammad, Khilwat, Afridi

In the current scenario of climatic change, exploration and development of new stable genotypes performing better under stressed and non stressed environmental conditions is the priority of wheat breeders for exploiting genetic variability to improve stress tolerant cultivars. Late planting is one of the major abiotic stresses, seriously influencing wheat production. In the current study, twenty eight bread wheat genotypes were evaluated independently under normal (optimal) and late (stress) planting conditions at Cereal Crops Research Institute (CCRI), Pirsabak Nowshera Khyber Pakhtunkhwa Pakistan during 2013-14. Analysis of variance revealed highly significant (P < 0.01) differences among the genotypes, planting (sowing dates), and genotype ? sowing dates interactions effects for the studied traits. Generally, reduction in plant height (0.41 to 10.91%) and grain yield (0.36 to 53.35%) was observed among the tested genotypes under late planting as compared to normal (optimal) planting. Least % reduction in grain yield was recorded for genotypes BWL-23 (0.36%), BWL-4(0.76%), BWL-16(1.22%) and BWL-13 (1.78%) and were found tolerant to late planting stress as compared to check (Pirsabak-2008). Eight stress selection indices i.e. Mean productivity (MP), Tolerance (TOL), Geometric Mean Productivity (GMP), Harmonic mean (HM), Stress selection Indices(SSI), Stress Tolerance Index (STI), Yield Index (YI) and Yield Stability Index (YSI) were determined based on mean performance of genotypes evaluated under normal and late planting conditions. Analysis of correlation revealed that plant height and grain yield under normal and late planting conditions, had significant positive correlation with stress selection indices i.e. GM, HM, SSI and YI. These selection indices could be effective in identification of lines/ genotypes to late planting stress tolerant conditions. Based on MP, GMP, HM, STI and YI genotypes i.e. Pirsabak-2008, BWL-23 and BWL-27 were found late planting stress tolerant and could be recommended for sowing in both normal and late planting.

Structural insights into impact of Y134F mutation and identification of fungicidal compounds against CYP51 in Puccinia triticina

BGRI 2018 Poster Abstract
Bharati Pandey Panjab University Chandigarh
Pradeep Sharma

Sterol 14?-Demethylase Cytochrome P450 (CYP51) protein involved in ergosterol biosynthesis pathways is a crucial target for efficient fungicidal compounds. However, the recognition mechanism and dynamic behavior of CYP51 in wheat leaf rust pathogen, Puccinia triticina is still obscure. Previously, a mutation at codon 134 (Y134F) was reported in five European isolates of P. triticina, the structural basis of this mutation remain unclear. To address this problem, CYP51 wild type protein and its variant proteins were successfully modeled using I-TASSER, an ab initio based structure prediction pipeline. To gain valuable insights into structure-function behavior for the binding wild-type and mutant-type proteins, individually generated protein models was subjected to 50ns molecular dynamics (MD) simulations run. Observably, this comparative protein-ligand interaction analysis and binding free energy results revealed that impact of mutation on the thermodynamics and conformational stability of the CYP51 protein is negligible. In present study, we carried out structure-based molecular docking and identified potent novel fungicidal compounds from four different databases and libraries. Consequently through MD simulation and thermodynamic integration, four novel compounds such as CoCoCo54211 (CoCoCo database),ZINC04089470(ZINC database), Allyl pyrocatechol 3,4 diacetate (Natural compound library) and 9-octadecenoic acid (Traditional Chinese Medicine database) has been predicted as potent fungicidal compound against CYP51 with XPGlidedocking score of -11.41, -12.52, -7.40 and -7.55 kcal/mol, respectively. These compounds were found to directly bond to heme group of CYP51, subsequently disturbing the stability and survival of fungus and can be used to control leaf rust in wheat.

Adult plant stem rust resistance of selected Egyptian and exotic bread wheat varieties

BGRI 2018 Poster Abstract
Mohamed Hasan Plant Pathology Research Institute
Atef Shahin, Mohamed Abu Zaid

Resistance genes Sr2, Sr22, Sr24, Sr25 and Sr26 confer adult plant resistance to Pgt race TTKSK (=Ug99). Ten Egyptian wheat varieties and four bread wheat entries from CIMMYT were screened with five DNA markers to determine the presence of these genes, and were evaluated for stem rust response at Sakha and Sids during the successive growing seasons of 2015/16 and 2016/17. Varieties Giza 171, Sakha 94, Gemmeiza 11, and CIMMYT lines 6043, 6091, 6107 and 6197 were resistant with severities ranging from TrR to 5MR/MS. Sr2 was present in all entries; Sr24 was present in one local Egyptian cultivar (Misr2); Sr25 was present in Misr 1, Misr 2, Gemmeiza 9, Gemmeiza 11, and lines 6091 and 6197; and Sr26 was present in line 6197.

Spreading of wheat yellow rust pathogen (Puccinia striiformis West.) in the south of Russia in 2017

BGRI 2018 Poster Abstract
Galina Vladimirovna Volkova All Russian Research Institute of Biological Plant Protection
Irina Petrovna Matveeva

Yellow rust caused by Puccinia striiformis West. is a harmful and dangerous disease in the south of Russia. Yield losses under optimum conditions on highly susceptible varieties can vary from 10 to 100%. During the growing season of 2017, cool weather with constant precipitation from the third decade of April to the first decade of June contributed to the intensive development of the pathogen. Surveys of the main winter wheat production areas in five agroclimatic zones of the region revealed that yellow rust was prevalent in all areas. The maximum development of P.striiformis was observed in southern submontane and western Priazovsky agroclimatic zones. Some varieties such as Grom, Yuka, Tanya, Anka had losses to yellow rust of up to 30-40 %. In the central and northern agroclimatic zones, the losses averaged 5%, whereas in the dry eastern steppe zone losses were only up to 1%. The build up of yellow rust inoculum in the region raises concerns that in 2018, under favorable weather conditions in spring, winter wheat crops could be infected with the disease, especially in the wetter agroclimatic zones.

Characterisation of putative pleiotropic wheat leaf rust resistance gene Lr13

BGRI 2018 Poster Abstract
Timothy Hewitt CSIRO
Jianping Zhang, Peng Zhang, Robert Park, Narayana Upadhyaya, Robert McIntosh, Sambasivam Periyannan, Brande Wulff, Burkhard Steuernagel, Evans Lagudah

Evolution of rust pathogens continues to pose challenges to global wheat production. Major resistance (R) genes, which encode proteins of the NBS-LRR (Nucleotide-binding site, leucine-rich repeat) family, have been a valuable resource for breeders to minimise yield losses from infection. Many wheat varieties harbor numerous R genes that could be identified and cloned in order to engineer more sustainable disease control. The advent of targeted gene enrichment and next-generation sequencing (NGS) has allowed rapid cloning of specific R genes, thus enhancing efforts to pyramid these genes and investigate their underlying resistance mechanisms. Several R genes present different phenotypes in certain genetic backgrounds, and cloning them would be an important step towards uncovering their interactions. Hybrid necrosis is one such phenotype observed in crosses of wheat genotypes involving the R gene Lr13 and complementary genes, Ne1 and Ne2, occurring in different allelic forms. It was recently concluded that Lr13 and an allele of Ne2 are actually the same gene based on genetic and mutational studies. The capability of Lr13 to confer both leaf rust resistance and hybrid necrosis cannot be answered without first cloning it. The lack of tightly linked markers coupled with the proximal 2BS chromosomal location of Lr13 does not make it easily amenable to map-based cloning. The NGS-based pipeline MutRenSeq (mutagenesis and R-gene enrichment sequencing) was used on EMS (Ethyl methanesulfonate) induced, susceptible Lr13 mutants along with support from comparative genomics to ascertain candidate gene sequences for Lr13, which are at advanced stages of screening and confirmation. Definite proof that a single gene is involved will only come with transformation studies when the cloned Lr13 candidate transformed into a susceptible line confers both a resistance phenotype in the transgenic line and a necrotic phenotype in the offspring of crosses between the transgenic line and a line possessing Ne1.

Resistance to tan spot in Tunisian wheat landraces

BGRI 2018 Poster Abstract
Mejda Cherif National Agronomic Institute of Tunisia
Sana Kamel, Elhem, Elfahem, Wissal Feriani, Hanen Sbei

In order to identify sources of resistance to tan spot caused by Pyrenophora tritici-repentis, 359 local wheat accessions were evaluated for reaction to the Oued-Mliz isolate in controlled conditions and in the field. Two and three assessments were carried out at the seedling and adult stages, respectively. There was a highly significant accession effect and 4.2% of accessions were highly resistant in both controlled conditions and the field. Assessments at the seedling stage were positively correlated with each other, and assessments in the adult stage were also positively correlated. However, assessments at the seedling stage were negatively correlated with those at the adult stage. One hundred and fifty five accessions with known origins (from 15 localities belonging to four districts) were projected on a graph defined by the two axes: reactions at the seedling stage and reactions at the adult stage. After placing the average reactions at the seedling and adult stages on the graph, four groups of accessions were obtained: accessions that were resistant to both stages, accessions that were resistant at the adult stage only, accessions that were resistant at the seedling stage only, and accessions that were susceptible at both stages. All four groups were found in each district. However, considering localities, reactions of accessions were highly variable. For example, accessions originating from Menzel Hbib were genetically variable and were represented in each of the four groups, whereas accessions from Sidi El Hani were all resistant at both stages. Further work is needed to study the genetic variability within and between localities and to better understand the resistant accessions.

Genomic selection and genome scan to identify valuable durum wheat germplasm for abiotic stress

BGRI 2018 Poster Abstract
hafssa kabbaj Mohamed 5 university/ICARDA
Amadou tidiane sall, meryem zaim, Ayed Al-abdallat, Gregor Gorjanc, Jesse Poland, Miloudi Nachit, Abdel karim Filali Maltouf, Bouchra Belkadi, Rodomiro Ortiz, Filippo Bassi

Durum wheat production is globally important, but grain yield has been stagnating in recent decades. In order to ensure that its production maintains the pace with increasing demand, breeding for high grain yield must be supported by molecular-based methods. Genomic estimated breeding values for selection and genome scan were assessed as molecular tools holding maximum potential for durum wheat breeding. Four recombinant inbred line populations bred by inter-mating elite were sown in yield trials at five sites. All progenies were characterized using “genotyping by sequencing” method. A consensus map was developed, and missing genotypes were imputed using a Hidden Markov model to reach a total of 1987 polymorphic markers. Models accounting for genotype environment interactions were used to estimate the genetic component of each measured trait. Hence, Bayesian ridge regression was used to determine the predicted values and their relative accuracy in several combinations, testing full-sibs and half-sibs as training population for grain yield and 1,000 kernel weight. The high level of accuracy achieved suggests that GEBV for selection holds great potential for durum wheat breeding, as long as full-sibs are used as training populations, in combination with statistical models that account for G?E. In order to test the exploitability of genome scan to guide breeding crosses, a separate genome-wide association study was conducted. 288 elite were sown in the south of Morocco and at two sites along the Senegal River for two years. These sites show a temperature differential of 10?C. Implementing a GE model facilitated identifying the most heat tolerant among the tested entries. 8,173 polymorphic SNPs were inquired, and several associations could be identified between markers and the ability to withstand the heat gradient. Hence, GWAS holds great potential to increase genetic gain in breeding via increased accuracy in determining the crosses to be made.

Mining novel seedling stripe rust resistance from Vavilov's wheat landraces using conventional and modern genetic tools

BGRI 2018 Poster Abstract
Raghvendra Sharma QAAFI, The University of Queensland
Robert McIntosh, Peng Zhang, Sami Hoxha, Adnan Riaz, Burkhard Steuernagel, Brande Wulff, Evans Lagudah, Lee Hickey, Sambasivam Periyannan

Wheat is one of the most important staple food and agricultural crop cultivated worldwide. To meet the demands of the raising human population, global wheat production has to be increased which is however declined due to appearance of highly virulent strains of Puccinia striiformis f. sp. tritici (Pst) fungus causing stripe rust disease. Globally, the incidence of stripe rust is effectively managed through the deployment of host plant mediated genetic resistance. But as the resistance present in the current wheat cultivars are ineffective, new sources of resistance particularly from pathogen unexposed genetic resources are of urgent need to prevent stripe rust epidemics. Landrace collections with rich genetic diversity and being less exposed to prevalent pathogen are of valuable source for resistance to new pathogens. In this study, a total of 295 landrace accessions collected by the famous Russian botanist Vavilov was screened for stripe rust resistance using the two predominant lineage Pst strains of Australia. Six accessions with good resistance against the two aggressive Pst strains were selected for genetic characterization and for utilization in global wheat breeding. Characterisation of these novel resistance were undertaken using combination of conventional and advanced genetic tools. While the conventional approach involves the traditional map based gene cloning, the other tool is the recently identified rapid method based on mutagenesis, targeted gene capture and next generation sequencing called “MutRenSeq”. Subsequently, the identified novel resistant traits were transferred into elite wheat cultivars through the combination of linked molecular markers and speed breeding techniques. Thus along with the identification of novel resistance, elite wheat cultivars with broad spectrum stripe rust resistance were also generated through the use state of art techniques to sustain global wheat production from the rapidly evolving stripe pathogens.

The need for seed: Support for formal and informal suppliers of certified wheat seed in Ethiopia

BGRI 2018 Poster Abstract
Bekele Abeyo CIMMYT
Ayele Badebo, Abebe Atilaw, Habtemariam Zegeye, Zerihun Tadesse, Wasihun Legesse, Terefe Fitta, Dawit Asnake

In Ethiopia, quality seed of improved varieties is the least expensive and most critical input for the sustainable production of wheat, a strategic food security crop grown by some 4.7 million households on 1.7 million hectares. Because wheat is self-pollinated, farmers can save and replant seed from their harvests for several years, without the variety losing its genetic identity. At the same time, recommended seed rates for wheat (150 to 200 kilograms per hectare) are significantly higher than those for tef (15 kg/ha) or maize (25 kg/ha), so some 255,000 tons of seed is required to sow Ethiopia’s entire wheat area each year. Most of this still comes from informal seed systems; only four seed enterprises (ESE, ASE, OSE and SNNPSE) currently produce certified seed of various crops and they lack the capacity to supply enough high quality seed for the nation’s approximately 20 million households. In collaboration with the Ethiopian Institute of Agricultural Research (EIAR) and through the USAID-funded project “Seed multiplication and delivery of high-yielding rust resistant bread and durum wheat varieties to Ethiopian farmers,” the International Maize and Wheat Improvement Center (CIMMYT) is working to increase wheat farmers access to affordable, certified seed of improved varieties that are high-yielding and also feature durable resistance to the rust diseases. Approaches pursued include the fast-track evaluation and release of improved varieties, the pre-release or accelerated seed multiplication of released wheat varieties through formal and informal seed systems, and demonstrations and scaling up of improved wheat varieties. This paper describes best practices to address seed shortages faced by wheat farmers in 53 woredas.

Spreading of wheat yellow rust pathogen (Puccinia striiformis West.) in the south of Russia in 2017

BGRI 2018 Poster Abstract
Galina Vladimirovna Volkova All Russian Research Institute of Biological Plant Protection
Irina Petrovna Matveeva

Yellow rust caused by Puccinia striiformis West. is a harmful and dangerous disease in the south of Russia. Yield losses under optimum conditions on highly susceptible varieties can vary from 10 to 100%. During the growing season of 2017, cool weather with constant precipitation from the third decade of April to the first decade of June contributed to the intensive development of the pathogen. Surveys of the main winter wheat production areas in five agroclimatic zones of the region revealed that yellow rust was prevalent in all areas. The maximum development of P.striiformis was observed in southern submontane and western Priazovsky agroclimatic zones. Some varieties such as Grom, Yuka, Tanya, Anka had losses to yellow rust of up to 30-40 %. In the central and northern agroclimatic zones, the losses averaged 5%, whereas in the dry eastern steppe zone losses were only up to 1%. The build up of yellow rust inoculum in the region raises concerns that in 2018, under favorable weather conditions in spring, winter wheat crops could be infected with the disease, especially in the wetter agroclimatic zones.

Increase in surveillance activities in SAARC region through streamlined efforts and enhanced tool box

BGRI 2018 Poster Abstract
Vijay Paranjape Sathguru Management Consultants
Kanan Vijayaraghavan, Venugopal Chintada, Rituparna Majumder, Richa Kapur, K. Aishwariya Varadan

South Asia has the highest “wheat dependent” low income community in the world. Stem rust and blast are recognized as the most damaging disease of wheat in the region producing 19% of the world’s wheat. In order to combat the potential threat the national research centers were geared up to track the real time movement of wheat diseases, generate disease incidence data and create an enabling environment to boost wheat research in the region through streamlined efforts and enhanced SAARC tool box deployed six years ago.
Recent data (2016-17) from the tool box has shown a significant increase in the data records captured in this region compared to previous years. This has been possible because of heightened awareness amongst the scientists and with the continuous capacity building through pre-season and in-season surveillance trainings organized by Sathguru in collaboration with National Wheat Research Institutes at various levels.
The model is helping partner institutes to be self-sufficient for generating, maintaining wheat disease surveillance data in national and global databases and exchanging real time information with stakeholders. The application have been widely deployed and competently being used by 95% of rust surveillance teams in the wheat fields of SAARC region.
The study will focus on how national research center’s judicious decision of carrying out diligent surveillance during the season contributed to safeguarding wheat crops in their respective nations through increased vigilance on emergence of new races and targeted introduction of regionally resistant varieties. Further using this data scientist’s can aim to strategize their wheat research for identification of resistant varieties and eventually resulting in increased productivity addressing food security of the region.

Molecular screening and identification the carriers of effective Yr genes in wheat germplasm of Central Asia

BGRI 2018 Poster Abstract
Alma Kokhmetova Institute of Plant Biology and Biotechnology
Makpal Atishova, Aygul Madenova, Kanat Galymbek, Jenis Keyshilov, Hafiz Muminjanov, Alexey Morgounov

Wheat rust diseases are a major cause of yield losses of this crop. Yellow (Puccinia striiformis f. sp. tritici) rust is of the most widespread and dangerous disease of wheat and is the major factor that adversely affects wheat yield and quality. The use of genetic host resistance is the most effective, economical and environmentally safe method of controlling stripe rust that allows elimination of fungicides and minimize crop losses from this disease. Due to the threat of the development of epiphytoties of rust disease it is necessary to identify new donors of resistance to yellow rust and to develop resistant wheat breeding material. In the present study, attention was drawn to the effective yellow rust resistance genes Yr5, Yr10 and Yr15, which were identified in the process of molecular screening of wheat germplasm. Genetic analysis using S23M41 molecular marker linked to Yr5 revealed the presence of this gene in 17 out of 136 promising lines. Thirteen genotypes screened with Xbarc8 generated the DNA fragment associated with Yr15. Three advanced lines with Yr10 were identified using the SCAR marker. Three lines carrying two Yr genes (Yr5 and Yr15) were detected. Combination of Yr5 and Yr10 were found in 15 wheat lines. We identified a number of wheat genotypes highly resistant to stripe rust, which could be further evaluated to release new resistant varieties or to be used in the breeding program.

Resistance to aphids in synthetic hexaploid wheat derived lines

BGRI 2018 Poster Abstract
Leonardo A. Crespo-Herrera CIMMYT
Ravi P Singh, Julio Huerta-Espino

Aphids are major pests of wheat, able to cause up to 40% yield reduction solely due to direct feeding and up to 60% when feeding is combined with the transmission of viral diseases. Wheat resistance to aphids has proven to be effective in protecting yields and also in reducing the transmission rate of viral diseases. Moreover, aphid resistance is fundamental to reduce the negative impacts that the indiscriminate use of insecticides have on the environment and human health. In this study we report the results derived from the evaluation of 326 synthetic hexaploid wheat (SHW) derived lines against the greenbug (Schizaphis graminum [Rondai]). Primary SHWs were crossed with CIMMYT elite lines and further selected in the breeding pipeline. Therefore, such lines have acceptable agronomic characteristics for its further use in breeding programs. The 326 SHW derived lines were evaluated at seedling stage, in five augmented incomplete blocks, arranged in split-plots, with two treatments (infested vs. non-infested) and with resistant and susceptible checks replicated 16 times. The measured variables were chlorophyll content with a SPAD meter and a visual damage score in a scale 0-100 was also taken. Measurements were recorded when the susceptible check was dead due to aphid feeding. The evaluations were repeated two times for confirmation. Our results indicate the presence of genetic variation for S. graminum resistance. We identified about 4 % of the lines to carry high levels of resistance against this aphid. These lines are currently used in CIMMYT’s bread wheat breeding program to incorporate the resistance in elite germplasm.

A new durum (Triticum durum Desf.) wheat variety MACS 3949 developed for rich nutritional pasta quality with high zinc and iron

BGRI 2018 Poster Abstract
Balgounda Honrao Agharakar Research Institute Pune
yashavanthakumar,Kakanur, Vijendra, Baviskar, Ajit, Chavan, Vilas, Surve, Vijay, Khade, Juned, Bagwan, Vitthal, Gite, Shrikant, Khairanar, Sameer, Raskar, Deepak, Bankar, Satish, Misra

MACS 3949 is a durum wheat variety developed at Agharkar Research Institute, Pune derived through selection method from 39th IDYN (CIMMYT). The variety was identified by 55th All India Wheat and Barley workshop CCS HAU, Hissar and subsequently notified by Central Sub Committee on Crop Standards, India. On the basis of mean of three years (2013-14, 2014-15 and 2015-16) data from All India coordinated experiment, grain yield of MACS 3949 (43.98 q/ha) was higher to all the checks Viz., NIDW 295 (39.70 q/ha) and UAS 428 (41.78 q/ha). Overall, MACS 3949 showed a yield advantage of about 10.78 % over NIDW 295 and 5.24 % over UAS 428. The important morphological traits of the variety described as, semi dwarf with average plant height around 81 (78-83) cm, medium sized strong waxy semi erect green leaves, parallel dense spikes with long spreading awns. Grains were amber colored, bold lustrous, semi hard, elliptical in shape with short brush, soft threshing at maturity and1000-grain weight was about 47 (42-53) gm. The variety has shown resistance to leaf rusts, in particularly the seedling resistance to race 77-complex of leaf rust, stem rust, leaf blight, powdery mildew, flag smut and karnal bunt under both natural and artificial screening conditions. It has high protein content (12.9 %), better nutritional quality (Zinc 40.6 ppm, Iron 38.6 ppm) with good milling quality (Test weight 81.4 kg/hl) and best cooking quality for pasta product having highest overall acceptability 7.25. The newly developed durum wheat variety MACS 3949 released for cultivation at Peninsular Zone in India, which is having rich source of nutritional pasta quality with high zinc and iron content will be a promising one for future potential of export at international market.

Virulence evolution of Puccinia striiformis f.sp. tritici on wheat in Kenya between 1970 to 1992 and 2009 to 2014

BGRI 2018 Poster Abstract
Mercy Wamalwa Egerton University Njoro, Kenya
Ruth Wanyera, James Owuoche, Julian Rodriguez, Annemarie Justesen, Lesley Lesley, Sridhar Bhavani, Cristobal Uauy, Mogens Hovmøller

Emergence of new virulent races of Puccinia striiformis f. sp. tritici (Pst) to stripe (yellow) rust resistance genes in wheat (Triticum aestivum L.) has historically resulted in severe yield losses worldwide. We conducted a study to characterize the virulence profiles of Pst races prevalent in Kenya from historic (1970-1992) and recent collections (2009-2014). Pst isolates collected during surveys in Kenya were characterized at the Global Rust Research Centre (GRRC), Denmark. Yellow rust differential sets (wheat lines with known Yr resistance genes), and strain-specific sequence-characterized-amplified-region (SCAR) markers were used to group the Pst isolates as Pst1 or Pst2. Virulence to Yr1, Yr2, Yr3,Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, and the seedling resistance in AvocetS were detected. A total of 12 virulence profiles /races were detected in isolates obtained during 1970 to 1992, while six races were detected from samples collected between 2009 to 2014. In both periods, races with virulence profiles Yr2, Yr6, Yr7, Yr8, Yr25, Yr27, Avs and Yr2, Yr6, Yr7, Yr8, Yr17, Yr25, AvS were common. The SCAR results revealed that both Pst1 and Pst2 strains were present in the Pst isolates tested, Pst1 even in isolates from the 1970s. Additional isolates were also identified with neither Pst1 nor Pst2 profiles. From our findings, race analysis is key to understand the race diversity and pre-breeding efforts for effective resistance gene deployment.

Resistance to aphids in synthetic hexaploid wheat derived lines

BGRI 2018 Poster Abstract
Leonardo A. Crespo-Herrera CIMMYT
Ravi P Singh, Julio Huerta-Espino

Aphids are major pests of wheat, able to cause up to 40% yield reduction solely due to direct feeding and up to 60% when feeding is combined with the transmission of viral diseases. Wheat resistance to aphids has proven to be effective in protecting yields and also in reducing the transmission rate of viral diseases. Moreover, aphid resistance is fundamental to reduce the negative impacts that the indiscriminate use of insecticides have on the environment and human health. In this study we report the results derived from the evaluation of 326 synthetic hexaploid wheat (SHW) derived lines against the greenbug (Schizaphis graminum [Rondai]). Primary SHWs were crossed with CIMMYT elite lines and further selected in the breeding pipeline. Therefore, such lines have acceptable agronomic characteristics for its further use in breeding programs. The 326 SHW derived lines were evaluated at seedling stage, in five augmented incomplete blocks, arranged in split-plots, with two treatments (infested vs. non-infested) and with resistant and susceptible checks replicated 16 times. The measured variables were chlorophyll content with a SPAD meter and a visual damage score in a scale 0-100 was also taken. Measurements were recorded when the susceptible check was dead due to aphid feeding. The evaluations were repeated two times for confirmation. Our results indicate the presence of genetic variation for S. graminum resistance. We identified about 4 % of the lines to carry high levels of resistance against this aphid. These lines are currently used in CIMMYT’s bread wheat breeding program to incorporate the resistance in elite germplasm.

Characterization of a diverse South American wheat panel to identify new leaf rust and stem rust resistance genes

BGRI 2018 Poster Abstract
Paula Silva INIA Uruguay and Dep. Plant Pathology, Kansas State University, US
Pierina Clerici, Richard Garcia, Fernando Pereira, Noelia Perez, Martin Quincke, Silvia German

Leaf rust (LR) and stem rust (SR) are threats to global wheat production and new races frequently overcome resistance genes deployed in wheat cultivars. Identification of new sources of resistance is a major goal for many pre-breeding programs. The objective of this study was to investigate the genetic basis of resistance to LR and SR in a diverse South American wheat panel. Molecular markers for known resistance genes and GBS were used to dissect genetic components. The wheat panel of 122 lines was characterized under field conditions at La Estanzuela Research Station, Uruguay, for disease severity (DS) to LR (2014 and 2015) and SR (2015), and LTN (leaf tip necrosis). Final DS for LR ranged between 0 and 95%, with mean values of 40% (2014) and 46% (2015). For SR, final DS ranged between 0 and 50%, with a mean value of 5%. The frequencies of positive diagnostic resistance markers among accessions were 20.5% for Lr34/Sr57, 6.6% for Lr68, 3.3% for Sr2/Lr27, 23% for Sr31/Lr26, 20.5% for Sr24/Lr24, 9.4% for Sr25/Lr19, and 0% for Sr39/Lr35. Of all the LR/SR resistance genes, only the effect of Lr68 was significant when predicting LR DS. Seventeen lines were identified with combinations of two genes, but no combination conferred a significantly improved level of resistance. Preliminary GWAS analysis for LR response on a subset of 86 lines revealed several QTLs, with a major QTL explained by Lr68. Lines with good levels of resistance to LR and SR, high expression of LTN, and absence of markers for the studied resistance genes were identified, indicating that there are other genes involved in resistance. Future research involving the testing of additional molecular markers for other known resistance genes, and a deeper GWAS analysis, will provide further information about the resistance genes present in this wheat panel.

Molecular detection of adult plant leaf rust resistance gene Lr46 in durum wheat germplasm

BGRI 2018 Poster Abstract
Reham Abo Al-Kanj Aleppo University
Mohammad Kassem, Ghinwa Lababedi, Naim Al-Husien

Leaf rust is the most common rust in wheat production areas of Syria and causes significant annual yield losses. Using genotypes with durable resistance is the most economical way of controlling the disease. One of the best-known leaf rust resistance genes is Lr46 that confers a slow rusting type of adult plant resistance. The main objective of this study was to identify Lr46 in durum wheat genotypes using morphological and molecular markers. Thirty-two durum wheat genotypes were evaluated for response to leaf rust at the seedling and adult plant stages. Twelve genotypes (37.5%) were resistant (R), 10 (31.25%) were moderately resistant (MR), seven (21.87%) were moderately susceptible (MS), and three (9.37%) were susceptible (S). Molecular marker analyses using SSR marker wmc44 showed that 16 genotypes (50%) carried Lr46/Yr29. The genotypes possessing the marker linked to Lr46/Yr29 could be used for selection of Lr46/Yr29 in breeding for slow rusting resistance in durum.

Enhancing crop genetic diversity using crop wild relatives (CWR)

BGRI 2018 Poster Abstract
Chetan Patokar International Center for Agriculture Research in Dry Areas (ICARDA)
ahmad amri, El-Haddoury Jamal

Constant climatic change and rapid evolution of diseases and pests have created challenges for plant breeders to find novel sources of resistance within cultivated gene pool. However wild (alien) relatives of crops still carries many promising resistance genes to biotic and abiotic stresses. Plant breeders around the world have successfully attempted to recover some of the beneficial genetic diversity lost (or never included) during the domestication and crop improvement process by crossing cultivated varieties with wild species to introgressed many valuable genes into crops like wheat and barley. This pre-breeding attempt to regain the genetic diversity of crops based on crop wild relatives (CWR) had been started at ICARDA 1994. Furthermore, The Global Crop Diversity Trust (GCDT) recently provided a grant to ICARDA within the Crop Wild Relatives (CWR) project to strengthen the research on use of genetic resources in pre-breeding of barley and grass pea. The pre-breeding activity in barley is focused on transferring genes of resistance to complex diseases and pests (scald, spot blotch and barley gall midge), improving tolerance to drought, heat and salinity, and enhancing the nutritional value through improving Iron and Zinc concentrations and amylases activity. Crosses were made between wild barely H. Vulgare X cultivated barley H. Vulgare subsp. H. spontaneum. The main objective of pre-breeding in Grasspea is transferring genes of low or no ?-ODAP from crossable species L. cicera and L. amphicarpus, L. tingitanus, L. aphaca, L. odoratus, L. sphaericus, L. nissolia, and L. aureus. Interspecific crosses were made between L. sativus x L.cicera followed by embryo rescue. Currently all the pre-breeding lines with targeted traits are under screening against the respective selection pressures using precision phenotyping.

Mining of hulled wheat species for yield gain in bread wheat (Triticum aestivum L.)

BGRI 2018 Poster Abstract
Vikas Venu Kumaran ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, The Nilgiris, Tamilnadu, India
SIVASAMY,MURUGASAMY, JAYAPRAKASH, PARAMASIVAM, RAJESH KUMAR, MEENA

Emmer wheat (Triticum dicoccum L.), tetraploid species (AABB) and spelt wheat (Triticum spelta L.), hexaploid species (AABBDD) are old world hulled wheat species cultivated centuries ago in different parts of the world. These species were later replaced by higher yielding bread and durum wheat in the last centuries. Grain yield is influenced by grain number per unit area and grain size which correlates positively with grain weight. Increasing the grain number was extensively and intensively explored in the past 100 years of wheat breeding which has nearly reached to saturation and leaves little room for further yield increase due to grain number?grain size trade off. Grain size/grain weight is believed to be major driving force for further improvement of wheat yield. Both the species have been characterised with larger grain size and higher grain weight; therefore an ideal source to improve the grain size/grain weight while maintaining the grain number per spike in the cultivated bread wheat. A total of 25 accessions each of emmer and spelt wheat with good grain size and weight were crossed with 5 elite bread wheat lines. In the F2 generation, recombinant lines with good grain size, higher grain weight and grains number were further backcrossed with bread wheat. Stable lines with free threshing were obtained at BC4F4 generations and were analysed for quality. Thousand grain weight (TGW) and harvest index (HI) ranged from 46-55g and 0.47-0.58 in stable lines respectively. Stable lines yielded 16-21% than the high yielding check while number of grains per spike was maintained as that of check. Stable lines involving spelt crosses have higher grain size, TGW and HI than emmer wheat crosses. Stable lines could be released directly as cultivar or else used as one of the parents in the wheat improvement programme.

Genetic variation and differentiation in global populations of the wheat leaf rust fungus, Puccinia triticina.

BGRI 2018 Poster Abstract
James Kolmer USDA-ARS Cereal Disease Laboratory
Maria Ordonez, Silvia German, Kun Xiao, Amy Fox, Maricelis Acevedo

The leaf rust pathogen, Puccinia triticina is widespread across all major wheat growing regions worldwide. Collections of P. triticina were obtained from common and durum wheat in North America, South America, Europe, South Africa, the Middle East, East Africa, Russia, Central Asia, China, Pakistan and New Zealand in order to determine the genetic diversity within each region and genetic relationship between regions. A total of 831 single uredinial isolates were characterized for virulence to isogenic lines of Thatcher wheat and for molecular genotype at 23 SSR loci. The isolates in East Africa and Europe were the most diverse for the average number of effective alleles per locus, while the populations in Russia and North America were the least diverse. The isolates in Europe and South America had the highest number of multilocus genotypes of 81 and 75, respectively, and were the most diverse for Shannon’s genotypic diversity. All populations had significantly higher levels of Ho compared to He at individual SSR loci, and had highly significant values of Ia and rd which indicated clonal reproduction. Europe had the highest number of distinct SSR genotype groups with eight, and Russia had only two SSR groups. The populations in North America and South America; Russia and Central Asia; the Middle East and East Africa; were closely related for SSR genotype based on Nei’s genetic distance. Based on k means clustering and DAPC of SSR genotypes, isolates virulent to durum wheat were placed into a single separate group, and isolates virulent to common wheat were placed into five other groups. Twenty-seven SSR genotypes were found in different continental regions. Isolates with identical or highly related SSR genotypes also had identical or similar virulence, which indicated historical and current migration of P. triticina worldwide.

Rust on wheat in the Czech Republic

BGRI 2018 Poster Abstract
Pavel Horcicka Research centre SELTON
Alena Hanzalova, Jaroslav Matyk, Pavel Bartos

In the Czech Republic all three rust species on wheat occur. Leaf rust (Puccinia triticina) can be found almost everywhere, and it can cause yield losses up to 40% mainly in warmer parts of the country in South Moravia.
Yellow rust, typical for cooler climate, occurred in relatively long time intervals. However in 2013 new pathotypes tolerating higher temperatures occurred and caused yield losses. In 2016 yellow rust incidence was lower, being still important in Moravia, where yellow rust occurred already in previous years.
Stem rust incidence was very rare in the last years. However in Germany, outbreaks and new pathotypes (e.g. Digalu) of stem rust in 2013 were recorded and comeback of stem rust to Central Europe can be expected.
Rust control consists of chemical control and especially of breeding for resistance, that aims at combined resistance to all three rusts. On the scale 9 high resistance, 1 high susceptibility average 4 year rating (2013-2016) of the tested cultivars was 6.4 for yellow rust, 5.7 for leaf rust and 6.2 for stem rust.
“Triple rust resistance” was recorded in spring wheat LOTTE and winter wheat line SG-S 1684 13, high resistance to yellow rust and stem rust in the cultivar Steffi. Resistance to all three rusts of 14 winter wheat cultivars and 12 breeding lines from the Plant Breeding Station-Stupice is summarized on separate tables and described in the text.

Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L.

BGRI 2018 Poster Abstract
Mengxing Wang State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
Hui,Liu, Guangwei, Xing, Xiaojun, Nie, Song, Weining, , , , , , , , , , , , , , , , , , , , , ,

RNA editing is an important way to convert cytidine (C) to uridine (U) at specific sites within RNA molecules at a post-transcriptional level in the chloroplasts of higher plants. Although it has been systematically studied in many plants, little is known about RNA editing in the wheat D genome donor Aegilops tauschii L. Here, we investigated the chloroplast RNA editing of Ae. tauschii and compared it with other wheat relatives to trace the evolution of wheat. Through bioinformatics prediction, a total of 34 C-to-U editing sites were identified, 17 of which were validated using RT-PCR product sequencing. Furthermore, 60 sites were found by the RNA-Seq read mapping approach, 24 of which agreed with the prediction and six were validated experimentally. The editing sites were biased toward tCn or nCa trinucleotides and 50-pyrimidines, which were consistent with the flanking bases of editing sites of other seed plants. Furthermore, the editing events could result in the alteration of the secondary structures and topologies of the corresponding proteins, suggesting that RNA editing might impact the function of target genes. Finally, comparative analysis found some evolutionarily conserved editing sites in wheat and two species-specific sites were also obtained. This study is the first to report on RNA editing in Aegilops tauschii L, which not only sheds light on the evolution of wheat from the point of view of RNA editing, but also lays a foundation for further studies to identify the mechanisms of C-to-U alterations.

Potential of conservation agriculture for cereal-based sustainable farming systems and scaling up in eastern Indo-Gangetic plains

BGRI 2018 Poster Abstract
Resona Simkhada Nepal Agriculture Research Council, Nepal
Dipendra Pokharel, Thakur Prasad Tiwari, Mahesh Gathala, Hari Krishna Shrestha

Conservation agricultural practices have been found to be climate and labor smart, and sustainable, agricultural production technologies. The decline in productivity, increase in the cost of cultivation, labor intensive practice affected the cereal based farming system in Nepal particularly at the Indo-Gangetic plains. SRFSI has been working in response to concerns about the sustainability of the cereal based farming system at Sunsari and Dhanusha district of Nepal. This study was conducted to assess the adoption and scaling up of conservation agriculture in addition to input usage, production, net profit, B:C ratio, labour use, etc. of CA practice in Sunsari district, eastern Indo-Gangetic plains of Nepal. The study employed structured questionnaires survey and key informant survey as the main data collection tools. Project reports were taken as secondary data. The primary data related for the semi-annual report and annual report of the SRFSI project were collected jointly by the DADO, Sunsari and RARST, Tarahara. Study revealed that farmers had several tangible advantages and getting higher productivity through these practices. This study assessed the potential of CA based practices in Rice-Wheat and Rice-Maize farming system to improve the yields, net profit for sustainability of the cereal based farming system.

Impact of different levels of stem, stripe and leaf rust severity on two grain yield components of wheat in Egypt

BGRI 2018 Poster Abstract
Mohammed Abou-Zeid Wheat Diseases Department Plant Pathology research Institute, Agriculture Research Center.

Improvement of wheat (Triticum aestivum L.) is a major goal of plant breeders and pathologists to ensure food security and self sufficiency. Relationship between different levels of stem, stripe and leaf rust severity on the two grain yield components (1000-kernel weight and plot yield) were studied during 2015/2016 and 2016/2017 seasons at Sids Agricultural Research Station. Different epiphytotic levels of stem, stripe and leaf rust were created using spreader artificial inoculation and spraying the fungicide Sumi-eight. To create different rust severity, one, two, and three sprays were applied at 7 day intervals. Protected control treatment was obtained by spraying the fungicide four times. Correlation coefficient (R<sup>2</sup>) analysis depicted that positive correlation was found between different rust severity levels and yield loss. In 2015/2016 growing season, which stem rust started early, disease severity (%) reached its relatively high percentage (80%) with the highest loss (%) in both 1000 kernel weight (36.3%) and plot weight (37.82%). The effect of stripe rust infection on yield components was lower than those of stem rust and lowest in leaf rust. On the other hand, the lowest loss was observed with 10% of stem, stripe and leaf rust which sprayed three times. During 2016/2017 stripe rust infection caused the highest loss (%) in yield components, under the highest level 80% of severity, on the other hand leaf rust showed low level of loss (%) Compared with the stripe and stem rust.

Race analysis of Puccinia striiformis f.sp. tritici in Iran-2017

BGRI 2018 Poster Abstract
Farzad Afshari Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran

Stripe rust of wheat, caused by Puccinia striiformis f. sp. trirtici (Pst) is an important disease in many parts of Iran. Over last two decades several epidemics have occurred in Iran causing the breakdown of widely utilized sources of resistance in wheat cultivars. Fifty isolates were collected from different parts of Iran during 2017. Eight isolates of Pst. from 2017 have been processed to date for race analysis. Infection types were assessed on a 0-9 scale 16 and 18 days after inoculation using a scale similar to that described by McNeal et al. (1971). Infection types (ITs) 7 to 9 were regarded as virulent (susceptible) and lower than 7 were avirulent. Pathotypes 102E158A+,Yr27; 6E158A+,Yr27; 102E158A+,Yr27; 166E154A+,Yr27; 38E174A+; 38E158A+,Yr27; 238E190A+,Yr27 and 38E190A+,Yr27 were identified. Pathotype 238E190A+,Yr27+ (from West of Iran) was more aggressive during this study. Plants with Yr1, Yr4, Yr5, Yr10, Yr15, Yr24 and YrSP were resistant to all pathotypes. Pathotypes with virulence on plant with gene/s Yr2, Yr6, Yr7, Yr8, Yr9, Yr25, Yr26, Yr27, Yr32, YrSD, YrSU, YrND and YrA were more common. Seedling tests of Iranian wheat cultivars to race 238E190A+,Yr27+ showed that the new released cultivars that included Parsi, Baharan, Bahar, Pishgam, Zareh, Urom, Maihan, Dena, Haydarei and Shabrang were resistant to the new aggressive race with virulence on plants with Yr27.

Epidemics of yellow and stem rust in Southern Italy 2016-2017

BGRI 2018 Poster Abstract
Mehran Patpour Global Rust Reference Center (GRRC), Aarhus University, Denmark
Mogens Støvring Hovmøller, Jens Grønbech Hansen, Annemarie Fejer Justesen, Tine Thach, Julian Rodriguez-Algab, Dave Hodson, Biagio Randazzo

In 2016, severe epidemics of yellow (stripe) rust were observed on durum and bread wheat in European regions where the diseases in the past were insignificant or absent. Stem rust was also observed at epidemic levels for the first time in more than 50 years in Europe. On Sicily, both yellow and stem rust caused epidemics on cultivated durum and bread wheat and numerous breeding lines. In 2017, surveys in farmer fields and trial monitoring were carried out in Southern Italy during April-June. A total of 61 farmer fields and 9 experimental plots were inspected and rust samples collected. Despite unfavourable weather conditions for rust development, stem rust, yellow rust and leaf rust were detected on 86%, 50% and 14% of the surveyed sites, respectively. The surveys on Sicily covered approximately 70% of the durum wheat area, and data uploaded and visualised on the Wheat Rust Toolbox. On mainland Italy and Sardinia, yellow rust was observed, and sampled from nine fields in Sardinia and two in Puglia, whereas stem rust was detected and sampled in experimental plots in Sicily, Sardinia, Puglia, Lazio and Emilia Romagna. A total of 94 samples of stem rust, 30 samples of yellow rust, and 3 rust samples from Berberis aetnensis were sent to GRRC. Preliminary results of yellow rust genotyping and race phenotyping showed prevalence of race Triticale2015. Warrior(-) and a new race (Pst’New’- First detected in 2016) were also detected. For stem rust, TTTTF and TTRTF were detected in Sicily and mainland Italy and TKTTF was identified in Sardinia. Susceptibility of major commercial durum cultivars and breeding lines suggests the need for both durable resistance breeding and systematic surveys coupled to an early warning system.

Linkage Mapping of Stem Rust Resistance Gene(s) in Spring Wheat Line CI14275

BGRI 2018 Poster Abstract
Zennah Kosgey University of Minnesota, St. Paul, MN 55108, U.S.A
Ruth Dill-Macky, Ruth Wanyera, Sridhar Bhavani, Worku Bulbula, Matthew Rouse

Stem rust caused by Puccinia graminis f.sp. tritici (Pgt) is one of the major constraints to wheat (Triticum aestivum) production worldwide. Pgt races have rapidly evolved in several geographical regions due to the deployment of single resistance genes resulting in boom and bust cycles, hence combinations of resistance genes through pyramiding ensures durability of resistance in wheat varieties. Spring wheat line CI14275 displayed high levels of field resistance to stem rust in Kenya and USA compared to the parents in its pedigree (Thatcher, Kenya Farmer & Lee). To understand the genetics of resistance in CI14275, 114 Recombinant Inbred lines (RILs) were developed from the cross CI14275/LMPG-6 and screened for seedling response to Pgt races TTTTF, TPMKC, TRTTF, TTKSK & RTQQC. Chi-square goodness of fit tests suggested one-gene, three-genes, and four-genes segregated for response to races TTTTF, TPMKC and RTQQC, respectively. The RILs were all susceptible to races TTKSK and TRTTF. CI14275 showed intermediate low infection types only against races TPMKC (23-) and TTTTF (1+3C). Field screening of the population was completed in Kenya, Ethiopia and St. Paul where CI14275 showed high levels of resistance TMR (Kenya), 5MS (Ethiopia) and 5RMR (St. Paul) against the prevalent races in the stem rust screening platforms. LMPG-6 displayed susceptible responses ranging from 70S-90S in the three locations. 90K wheat Single Nucleotide Polymorphism (SNP) marker platform will be used to genotype parents and the population.

An ABA-induced sugar transporter gene TaSTP1 reinforces wheat susceptibility to Puccinia striiformis

BGRI 2018 Poster Abstract
Baoyu Huai State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling
Lijing Pang, Pu Yuan, Shoujun Hu, Jie Liu, Zhensheng Kang

Pathogens, whatever their types, develop at the expense of the nutrients generated by host and it is largely assumed that classical sources turn into sinks when colonized by pathogens. Sugar appears to be the major carbon and energy source transferred from the host to pathogens. Uptake, exchanges and competition for sugar, at biotrophic interfaces, are controlled by membrane transporters and their regulation patterns are essential in determining the outcome of plant-fungal interactions. However, mechanisms of transport and transporters involved in carbon partitioning between organisms are still poorly understood.
In this study, a wheat sugar transporter protein (STP) gene, TaSTP1, was cloned from a wheat-Puccinia striiformis f. sp. tritici (Pst) interaction cDNA library. Transcripts of TaSTP1 were up-regulated in wheat leaves that were infected by Pst or had experienced exogenous ABA and certain abiotic treatments. Heterologous mutant complementation in Saccharomyces cerevisiae revealed that TaSTP1 transports a broad-spectrum monosaccharides including glucose, fructose, mannose and galactose. Transient expression in Nicotiana benthamiana and Arabidopsis protoplasts suggested that TaSTP1 is localized in plasma membrane. Yeast two hybrid and bimolecular fluorescence complementation (BiFC) validated oligomerization of TaSTP1. Knocking down TaSTP1 using the barley stripe mosaic virus-induced gene silencing system reduced the susceptibility of wheat to the Pst virulent pathotype CYR31. Hyphal abnormality was significantly observed in VIGS plants. These results suggest that TaSTP1 may directly or indirectly participate in sugar transport in the wheat-Pst interactions and exert influence on suagr supply of Pst.

Evaluation of durum wheat landraces to yellow rust (Puccinia striiformis Westendorf f. sp. tritici)

BGRI 2018 Poster Abstract
Reza Mohammadi Dryland Agricultural Research Institute, Sararood branch, AREEO, Kermanshah, Iran
Ehsan,Lorestani, Reza, Haghparast, Mohammad Reza, Jalal Kamali, Ahmed, Amri, , , , , , , , , , , , , , , , , , , , , ,

Yellow rust (Puccinia striiformis Westendorf f. sp. tritici) is an important disease on wheat worldwide and especially in the highlands of West and Central Asia. Wheat landraces are composed of complex, variable, genetically dynamic and diverse populations, in equilibrium with both biotic and abiotic stresses prevailing in their environment. A germplasm collection consisting of 380 durum wheat accessions conserved at National Plant Gene Bank (Seed and Plant Improvement Institute, Iran) with worldwide origins, along with four check varieties were screened for resistance to yellow rust, and were also evaluated for several drought adaptative traits under rainfed conditions during 2009-10 cropping season at Sararood agricultural research station, Kermanshah, Iran. The study was conducted to quantify the phenotypic diversity and exploring durum accessions for yellow rust resistance, and to characterize the agronomic profile of different subsets of accessions for reaction to local yellow rust races. High natural infection, caused by the predominant virulent races of 6E8A+ and Yr27+, was experienced as shown by the 100 S reaction of the check bread wheat ?Sardari? and several highly susceptible accessions. The tested accessions exhibited significant variation in yellow rust severity, ranging from highly resistant to highly susceptible. Approximately 12.1% of accessions were found to be resistant to yellow rust, 9.5% were moderately resistant, 10.5% were moderately susceptible and 67.9% were susceptible. The germplasm showed a relatively modest response to yellow rust as expressed by a decrease in 1000-kernel weight (TKW) and a lower yield of the susceptible vs. resistant subsets by 11.4% and 19.9%, respectively. A comparison of foreign vs. Iranian resistant accessions, revealed higher yield productivity, higher TKW, and shorter plant height for the foreign accessions. Durum germplasm may constitute valuable genetic material for breeding new durum varieties characterized by high yield productivity under rainfed conditions and with adequate resistance to yellow rust.

Genetic Improvement in Quality, Grain Yield and Yield Associated Traits of Durum wheat (Triticum turgidum var.durum L.) in Ethiopia

BGRI 2018 Poster Abstract
Mekuria Dejene Ethiopian Institute of Agricultural Research

Information about changes associated with advances in crop breeding is essential for understanding yield-limiting factors and developing new strategies for future breeding programmes. Thirty-six durum wheat varieties released since 1966 were evaluated in three replications of the Randomized Complete Design at Debre Zeit and Akaki, Ethiopia during the 2016 cropping season to estimate the amount of genetic gain made over time in grain yield potential, yield-associated traits and in protein content. Analysis of variance revealed significant differences among varieties for all 16 quantitative traits, protein content and protein harvest in Kg ha-1 at each of the locations. Grain yield varied between 1.66t ha-1 for Arendato released in 1966 to 3.90t ha-1 for Megenagna released in 2012 with mean of 2.952t ha-1 at Debre Zeit. At Akaki yield range was between 2.45 and 5.04t ha-1 with mean of 3.992t ha-1. 25 varieties surpassed Arendato (3.754t ha-1) at this location. In the combined ANOVA significant difference between the varieties was observed only for spike length, spikelets spike-1, grains spikelet, grains spike-1, plant height, days to flowering, thousand grain weight and hectoliter weight. Varieties specifically adapted to only one of the locations, widely adapted varieties and varieties not adapted to any of the locations were identified. Regression analysis revealed that grain yield has increased by 22kg ha-1 year-1 since 1966; an increase of 40.6% over yield in 1966. This was accompanied with a significant decline of 11.4% in spike length, 6.7% in spikelets spike-1, 17.9% in protein content and 31.2% in protein yield ha-1 and a significant increase of 41.1% in grains spikelet-1, 32.9% in number of grains spike-1, 22.3% in thousand grain weight, 17.8% in grain filling period, 23.9% in seed growth rate, 40.1% in grain yield production rate, 7.9% in harvest index.

TaWRKY79, from a wheat variety with adult resistance, negatively confers wheat resistance to stripe rust at seedling stage

BGRI 2018 Poster Abstract
Xiaojie Wang Northwest A&F University
Yanping,Fu, kang, Wang, Yingbin, Hao, Zhensheng, Kang

Wheat adult plant resistance (APR) to stripe rust, a non-race-specific and durable resistance, is ideal for breeding. However, the knowledge concerning APR mechanism is largely limited. In order to further investigate the molecular basics of APR to provide guidance for wheat breeding, we conducted the transcriptome sequencing of wheat XZ9104 infected by Puccinia striiformis f. sp. tritici (Pst) at seeding and adult stages, respectively. Comparative analysis revealed that many WRKY transcription factors (TFs) may participate in the APR to stripe rust, of which, TaWRKY79 transcript levels were sharply elevated at the early infection stage in seedling plants. To dissect the relationship between TaWRKY79 and APR, we further studied the function of TaWRKY79. Subcellular localization showed that TaWRKY79 is located in the nuclear, and TaWRKY79 protein contains a separated region for mediating transcriptional activation at the C-terminus (246-328 aa) by yeast one-hybrid analysis. When TaWRKY79 was silenced by virus-induced gene silencing (VIGS) in seedling plants, the Pst growth was attenuated, with shortened hyphae, reduced hyphal branches and colony size. Meanwhile, the expression of TaWRKY79 was highly suppressed by salicylic acid (SA) but induced by jasmonic acid (JA) in seedling of wheat, and the transcription levels of LOX2 and PDF2.2 were significantly reduced, but the expression of PR1.1 was enhanced in TaWRKY79 knocking-down seedlings of wheat. Hence, these findings suggested that TaWRKY79, as a SA/JA cross talk, might play a negative role in resistance defence response to Pst infection at seeding stage by simultaneously activating the JA-dependent pathway and suppressing the SA-dependent pathway.

Triticum araraticum: A source of leaf rust and stripe rust resistance genes

BGRI 2018 Poster Abstract
Rohtas Singh School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana-141004 India
Ahmed Elkot, Satinder Kaur, Parveen Chhuneja

Stripe rust and leaf rust are two most widely distributed diseases of wheat despite the fact that major emphasis has been made globally to develop rust resistant varieties. The wild tetraploid wheat Triticum araraticum (AAGG) evolved in the eastern part of Fertile Crescent is a source of useful traits for the improvement of wheat including resistance to disease. T. araraticum acc. pau4692 and a derived advanced backcross introgression line (IL) in susceptible T. durum cv. Malvi local background showed high level of seedling resistance against Indian pathotypes of leaf rust and stripe rust. The F5 Single seed descent (SSD) population developed from the crosses between T. araraticum IL with T. durum cultivar PBW114 was screened with commonly prevalent pathotypes of leaf rust and stripe rust in India at the seedling stage. The genetic analysis indicated that the leaf rust resistance is conditioned by two genes and stripe rust resistance by a single gene. The SSR markers mapped on A and B genome were used for parental polymorphism along with resistant and susceptible bulks for leaf rust and polymorphic markers between bulks were used on the whole population. The molecular marker data using single marker analysis showed that leaf rust resistance genes were mapped on chromosome 2A and 7A linked to SSR markers Xwmc149 and Xbarc49, respectively. The genes have been temporarily named as LrAr1 and LrAr2. Bulked segregant analysis (BSA) for mapping stripe rust resistance is in progress.

Large scale pre-breeding efforts for broadening gene pool and genetic improvement of wheat

BGRI 2018 Poster Abstract
Sukhwinder Singh CIMMYT
Prashant,Vikram, Deepmala, Sehgal, Juan, Burgueno, Carolina, Sansaloni, Cynthia, Ortiz, Ernesto, Solis, Lulu, Ledesma, Pillar, Suaste, G, Fuentes, J, Ireta, A, Sharma, P, Srivastava, Sridhar, Bhavani, Thomas, Payne, V, Govindan

Wheat breeding programs have successfully harnessed the potential of elite germplasm pool and have contributed significantly to global food security. However, to obtain additional genetic gain, useful diversity for key traits from landraces, synthetics and wild relatives should be incorporated in breeding germplasm pool. Maladaptation and linkage drags are the bottlenecks in utilizing these exotic genepools for pre-breeding. A systematic, focused, large scale effort has been pursued at CIMMYT through a three-way cross (exotic x elite1 x elite2) population development strategy. Population was advanced through selected-bulk scheme in way to select relevant genetic diversity while maintaining large population sizes. A total of 984 advanced pre-breeding lines (PBLs) were evaluated in multiple environments for grain yield related traits, micronutrient content and diseases resistance (yellow rust, stem rust, powdery mildew, and karnal bunt). Potential useful lines for these traits have been identified. High-density genomic characterization of PBLs, parental elites and exotics was conducted through a “haplotype map” based approach, which revealed 16% (58/361) exotic specific haplotype block (HB) introgression in PBLs. Out of 58 exotic specific HBs, 12 (12/361 = 3%) were found associated with traits evaluated in the study. Three HBs, H1.28 (1A), H18.1 (6D) and H5.23 (2B) were significantly important as they showed consistent effects across environments for grain yield (1A and 6D) and yellow rust (2B). This significant contribution of exotics into PBLs opens avenues to mine and utilize their useful alleles in wheat improvement. This research describes systematic large-scale pre-breeding efforts, as proof of concept of exotic germplasm deployment to the breeding pipelines simultaneously enriching genetic knowledge through high-density genomics analysis. Genetic knowledge coupled with breeding efforts should provide substantial gain required for next generation wheat varietal improvement.

Identification and characterization of winter wheat germplasm resistant to stem rust in Kenya and Turkey

BGRI 2018 Poster Abstract
Beyhan Akin International Maize and Wheat Improvement Center (CIMMYT), P.K. 39 Emek 06511 Ankara, Turkey
Nilufer,Akci, Sridhar, Bhavani, Mesut, Keser, Fatih, Ozdemir, Ruth, Wanyera, Alexey, Morgounov

A diverse set of winter wheat germplasm was screened for resistance to stem rust in large-scale trials in Kenya and Turkey during 2009-16. The study aimed to select resistant material and characterize types of resistance and possible genes, as well as evaluate agronomic traits and resistance to other diseases to select superior variety candidates and parental lines. The study material was comprised of various Facultative and Winter Wheat Observation Nurseries (FAWWON), which are developed and distributed by the International Winter Wheat Improvement Program (www.iwwip.org) in Turkey. More than 1600 global accessions were screened, with most evaluated for two years. Based on stem rust data from Kenya, more than 400 genotypes were identified exhibiting adequate levels of resistance to the Ug99 race group. The highest number of resistant lines originated from IWWIP (~170), USA (~100), Russia (~40), Iran (~30), Romania (~20), and South Africa (~20). Material was also tested at two sites in Turkey: Haymana (artificial inoculation) and Kastamonu (natural infection). There was no significant correlation between stem rust severities in Kenya and in Turkey, due to differences in stem rust pathotypes. However, a set of germplasm (more than 100 entries) has been identified as resistant in both countries. This set represents promising material as variety candidates and parental lines; another study is currently identifying the genes controlling the stem rust resistance in this population. IWWIP distributed stem rust resistant germplasm to its global collaborators during 2010-2015, in response to the threat from the Ug99 race group. New resistant germplasm combining broad adaptation, high yields, and resistance to other diseases is available on request.

Genetic variability of drought sdaptive traits in nepalese wheat (Triticum aestivum L.) germplasm

BGRI 2018 Poster Abstract
Dipendra Pokharel Department of Agriculture, Sunsari, Nepal

Wheat (Triticum aestivum L.) is one of the major cereal crops vital for global food supply. Most of the wheat crop in developing world including that of Nepal is either grown with limited irrigation or under rainfed conditions and thus face moisture stress at one or more growth stages limiting grain yield. An experiment was carried out at the Institute of Agriculture and Animal Science, Rampur to evaluate the genetic variability of selected drought adaptive traits in Nepalese wheat germplasm. The wheat genotypes evaluated comprised of Nepalese landraces and commercial cultivars, CIMMYT (International Center for Maize and Wheat Improvement) derived advanced introduction lines and three checks with differential drought adaptability. The wheat genotypes were grown in pots (single plant) arranged in a replicated split plot design in greenhouse under two contrasting moisture regimes, optimum and moisture stressed. The genotypes were evaluated for water use, water use efficiency, relative leaf water content and biomass production. The ANOVA (Analysis of Variance) revealed significant variation between environments and among the wheat genotypes for most of the traits studied. A wide range of variability was observed for water use, water use efficiency, biomass yield and relative leaf water content in moisture stressed and non-stressed environments. Nepalese cultivar Gautam showed a number of favorable drought adaptive traits, whereas, Bhrikuti was average in this respect. Based on the scores of drought adaptive traits recently released Cultivar (cv). Vijay was characterized as drought sensitive. A number of landraces and advanced breeding lines showed high level of water use efficiency and other positive traits for drought adaptation.

Association of Sr2 and lesion mimic (lm) for multiple disease resistance in wheat

BGRI 2018 Poster Abstract
Sudhir Nawathe Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
Punam Singh Yadav, Ramesh Chand, Vinod Kumar Mishra, Uttam Kumar, Arun Kumar Joshi

The Sr2 gene has been used extensively in bread wheat improvement for durable stem rust resistance. Interestingly, the resistance of Sr2, associated with the pleotrophic gene Pbc expressed as pseudo-black chaff (PBC), is tightly linked with Yr30/Lr27/Pm genes conferring multiple disease resistance. The linkage map of chromosome 3BS revealed that Sr2 is 0.43cM away from lesion mimic (lm) locus. The RIL population (Yangmai#6 ? Sonalika) of 88 lines including parents where Sonalika carries Sr2 and lm while Yangmai#6 is deficient to both was evaluated for three years (2013-2016). The objective was to determine if this fragment is inherited as one unit and provides resistance to multiple diseases. Twenty four SSR markers distributed between 0.00 to 7.09cM on 3BS covering both Sr2 (5.57cM) and lm locus (6.0cM) were studied in the RIL population. Phenotyping was done for Sr2 associated PBC and lesion mimic along with disease severity for leaf rust, and spot blotch. Positive and significant correlations were observed between leaf stem rust resistance with Sr2 carrying PBC and lm. However, lines with lm either alone or with Sr2 (showing PBC) exhibited spot blotch susceptibility. The reverse situation does not hold not true where genotypes carrying Sr2 alone showed no correlation with spot blotch resistance. This indicates that the Sr2 complex is inherited as a single unit. Use of 24 SSR also suggest that Sr2 and lm loci are tightly linked and inherited together. The co-inheritance of Sr2 and lm ensures the stability and durability of rust resistance. However, the discouraging observation of spot blotch susceptibility due to lm gene suggests a limitation in achieving multiple disease resistance in environments where spot blotch is important. We identified two transgressive segregates in the population showing least expression of lm despite the presence of Sr2 and lm together.

Genetic variability in bread wheat (Triticum Aestivum L. ) accessions using functional and random DNA Markers

BGRI 2018 Poster Abstract
Kachalla Kyari Mala Lake Chad Research Institute, Maiduguri, Borno State-Nigeria
Dattijo Aminu, Zakari Goji Silas Turaki, Fatima Henkrar, Udupa Sripada

The research was conducted at ICARDA, Rabat. Twenty-four accessions were obtained from LCRI for marker analysis. Wizard Genomic DNA Purification Kit was used for DNA extraction. DNA was extracted by CTAB method and quantified using 1.0 % (w/v) agarose gels. Total of 12 loci, 5 functional and 7 linked random DNA markers to the traits of interest were used. PowerMarker and DARwin software were used to calculate the No. of alleles and values of genetic diversity, PIC, genetic distance, and NJ dendrogram. The total No. of detected alleles was 39; and mean No. of alleles was 3.25. No. of alleles range from 1 (Dreb-B1) to 9 (Xgwm577). Genetic diversity index ranged from 0.0000 in Dreb-B1 to 0.8471 in Xgwm577. The PIC value was also varied from 0.0000 (Dreb-B1) to 0.8296 (Xgwm577). The frequency of biotic resistance linked random DNA marker allele at Xgwm144 and Xwmc44, associated with yellow and leaf rust gene was 25% each. Marker alleles Xgwm577 and Xgwm533 linked to Stb2 and Stb8 at 150 and 120bp have frequencies of 21 and 4%. The frequency of abiotic resistance showed 50% of accessions had 1R segment (1BL.1RS translocation) and 58% of accessions showed presence of 120bp allele of Xwmc89, associated with QTL for drought tolerant. Functional marker alleles of Dreb-B1 associated with drought tolerant genes showed alleles frequency in all accessions. Linked marker allele Xgwm111 linked to heat tolerant gene showed 17% allele frequency at 220bp. Rht1 and Rht2, the allele frequencies were 92 and 4%. 92% of the cultivars had photoperiod insensitive allele at Ppd-D1 locus. VrnA1a and VrnA1c primer pair amplified at 965, 876, and 484bp, allele frequency of 13 and 87%. Cluster analysis had grouped the accessions into 5 at a genetic distance level 0.15.

Virulence to Yr10 and Yr24 in Mexican yellow rust fungal population and implications for CIMMYT durum and bread wheat germplasm

BGRI 2018 Poster Abstract
Julio Huerta-Espino INIFAP, Mexico
Ravi Singh, Karim Ammar

Stripe rust, caused by Puccinia striiformis tritici (Pst), continues its evolution towards virulence to race-specific resistance genes. Identification of Mexican Pst isolates MEX16-03 and MEX16.04 that changed infection types of Yr10 testers from 1 to 9 and for Yr24 (=Yr26) testers from 3 to 9 indicated that a mutation for virulence to these resistance genes has occurred in a predominant race detected in 2014 and maintained at CIMMYT as MEX14.191 and at INIFAP as CMEX14.25. Isolate MEX14.191 was responsible for the susceptibility of popular varieties Nana F2007 and Luminaria F2014 grown in central Mexican highlands. Isolate MEX16.04 has the following avirulence/virulence formula: Yr1, 5, 15, SP/Yr2, 3, 6, 7, 8, 9, 10, (17), 24, 26, 27, 28, 31, 32 using the Avocet near-isolines and other known testers. Virulence to Yr10 and Yr24 (=Yr26) were also confirmed by testing seedlings of cultivars Moro (Yr10), Chuanmai 42, and Neimai 836 (Yr24). Seedling tests carried on 200 bread wheat, 550 durum, and 460 synthetic hexaploid wheats with their respective durum parents from CIMMYT collection indicated that MEX16.03 and MEX16.04 do not represent a major threat because a majority of the lines remained resistant to these isolates. However, it is worth mentioning that durum cultivars, such as Khofa, Desert King, Anatoly, Movas, and Llareta INIA, and 10 primary synthetic hexaploid or synthetic-derived bread wheats that were resistant to MEX14.191 became susceptible to MEX16.03 and MEX16.04. Our results indicate that resistance gene Yr10 was absent and Yr24 occurred in low frequency in CIMMYT bread wheat germplasm. A majority of CIMMYT durum wheat possibly carried Yr24 in combination with other effective gene(s).

Report on rust incidence and races identified in Kenya during 2016 surveys

BGRI 2018 Poster Abstract
Ruth Wanyera Kenya Agricultural and Livestock Research Organization
Hanningtone,Wanga, Phelister, Kinyanjui, Sridhar, Bhavani, Thomas, Fetch

In 2016 rust surveys were carried out in all the four key wheat growing regions: South Rift (June, July), Mount Kenya (July), North Rift (September) and Central Rift (part of August and September). A total of 304 farms were sampled. Stem rust was detected in 235 (78.3%), yellow rust in twenty-eight (9.3%) and leaf rust in fourteen (4.7%) of the farms. Stem and yellow rust were detected in all the wheat growing regions while leaf rust was detected in South, North and Central Rift. Stem rust infection ranged from TR to 90S with maximum infection in Central Rift (88.3%), Mt. Kenya region (80.3%); South Rift (76.5%) and North Rift (72.4%). Yellow rust infection ranged TR to 60S with maximum infection in Central Rift (16.7%); North Rift(13.3 %) and minimum infection in South Rift( 4.9%),) and Mt. Kenya region ( 1.7%). Leaf rust infection ranged from trace to 50S with maximum infection in North Rift (10.2%) minimum infection in Central Rift (3.3 %) and South Rift (1.2%). Fifty percent of the eight previously released wheat varieties are now susceptible to the Ug99 race. Race analysis results from AAFC Canada suggested the presence of TTKSK which was dominating in North Rift and TTKSK, TTKST and TTTTF were dominant in the screening nursery at Njoro. Yellow rust in the region has increased in the current year owing to the incursion of a probable new race AF2012 which has resulted in increased disease severity on varieties and materials tested in the International nurseries at KALRO, Njoro.

A large nested association mapping population to map agronomic QTL and smallholder farmers preference in Ethiopian durum wheat

BGRI 2018 Poster Abstract
Matteo Dell’Acqua Scuola Superiore Sant’Anna
Yosef G.,Kidane, Cherinet, Alem, Bogale, Nigir, Dejene, Mengistu, Carlo, Fadda

The Ethiopian plateau hosts thousands of durum wheat landraces cultivated in low input agriculture conducted by an estimated 70 million smallholder farmers. Having thoroughly characterized the phenotypic and molecular uniqueness of Ethiopian durum wheat landraces, we produced a large nested association mapping (NAM) population harnessing their mostly untapped diversity in a set of recombinant inbred lines (RIL). The NAM founders are 50 landraces providing valuable traits such as drought tolerance and resistance to pests, and maximizing molecular diversity. Each selected landrace was crossed to a durum wheat line with an international background (Asassa), establishing independent interconnected bi-parental families, for a total of 6,280 RILs currently in F8. The Ethiopian NAM is at once i) a powerful QTL mapping tool that will side the increasing availability of genomic tools in wheat towards high-throughput candidate genes identification, and ii) a large pre-breeding panel closing the gap between local and international materials. Here we discuss the molecular and phenotypic characterization of twelve NAM families, represented by 100 RILs each. The 1,200 NAM RIL showed elevated allelic variation and a genetic structure reminiscent of the breeding design followed. The NAM RILs were phenotyped for ten agronomic and five disease traits in multiple locations in the Ethiopian highlands. A quantitative method eliciting smallholder farmers traditional knowledge was used to record local farmers appreciation of NAM RILs in all phenotyping locations. We report that the superior genetic properties of the NAM can be used to map QTL for both agronomic and farmer traits with unprecedented precision. The most promising NAM RILs can be identified combining farmers appreciation and agronomic measures, and prioritized for introgression of Ethiopian landraces traits in breeding pipelines aiming at higher uptake and productivity in local agriculture.

A new stem rust resistance locus detected in wheat variety Yalta

BGRI 2018 Poster Abstract
Davinder Singh University of Sydney
Robert, Park

To monitor evolution and pathogenic variability of wheat stem rust pathogen (Puccina graminis f. sp. tritici) in Australia, the Australian Cereal Rust Control program regularly conducts national annual surveys. Recently, we detected a new pathotype 34-1,2,5,7 (culture # 661) virulent on stem rust resistance genes Sr5, Sr6, Sr7b, Sr9g, Sr11, Sr15 and Sr17. Although virulent on Sr11, this pathotype produced a low infection type (IT 22+C/X) on the Sr11-differential genotype Yalta, indicating that Yalta carries an uncharacterised resistance (SrY) in addition to Sr11. To characterize SrY, we screened a RIL population Yalta/W2691 (104 lines) with two pathotypes: 21-0 (avirulent on Sr11 or AA) and the newly identified 34-1,2,5,7 (virulent on Sr11 but avirulent on SrY or BB). Yalta produced low infection types, “1C” and “22+C/X” with pathotypes 21-0 and 34-1,2,5,7, respectively, whereas W2691 was susceptible to both pathotypes. The population segregated for AA/aa (35 Res: 69 Sus) and BB/bb (36 Res: 68 Sus) loci with pathotypes 21-0 and 34-1,2,5,7, respectively. The observed segregation (AA/aa and BB/bb) however failed to fit with predicted single gene 1:1 model (P<0.05) with both pathotypes. Joint segregation analysis (AA/aa vs BB/bb) also significantly deviated (P<0.01) from 1:1:1:1 (AABB:AAbb:aaBB:aabb) genetic model. It appears that population is skewed towards susceptibility in each case either by chance or differential gametic transmission as reported previously in progenies derived from crosses involving variety Yalta. The segregation pattern (AABB and aabb) with two pathotypes was, however, highly coupled apart from 13 lines, of which, 6 lines (AAbb) were susceptible with 21-0 and resistant with 34-1,2,5,7, and 7 lines (aaBB) resistant with 21-0 and susceptible with 34-1,2,5,7, showing that the two loci are linked (?2 linkage = 76.9; P<0.001) and located very close to each other. If that is the case, it may imply that SrY is common in wheats carrying Sr11. Cultivar Charter has been used in India to differentiate pathotypes virulent for Sr11, suggesting that Charter also carries a second stem rust locus (SrC) possibly corresponding with SrY. Further studies and mapping work are underway to determine the genetic relationship between SrY, SrC and Sr11.

Utilization of Jordanian durum wheat (Triticum turgidum ssp durum) landraces for crop improvement in dry areas

BGRI 2018 Poster Abstract
Ayed Al-Abdallat Faculty of Agriculture, The University of Jordan
Moneer Mansour, Nasab Rawashdah, Rabei Sayaydeh

Durum wheat (Triticum turgidum subsp. durum) landraces are rapidly disappearing from the main wheat production areas in the Fertile Crescent. Such local landraces are most likely contain geographically specific, ectopically adapted alleles or gene complexes for their harsh environments. A panel of 156 durum wheat landraces and released varieties were assembled from historical collections deposited in national and international gene banks and from a recent active collection mission from selected areas across Jordan. The panel were evaluated under field conditions in two different locations for one growing season. Data for days to heading, plant height, peduncle length, number of spikes spike length, spike weight, grains number, grains weight, number of kernels per spike and thousand-kernel weight were recorded. Results indicate the existence of a wide variation between the tested genotypes for all tested agronomical traits. For heading date, the Jordanian landrace “JDu103” was the earliest under dry environment conditions. Regarding grains weight and spike weight, the Jordanian landrace “JDu105” produced the highest mean value under humid conditions. Another landrace “JDu46” produced the longest spikes and the highest TKW mean value, while the Jordanian landrace “JDu105” produced the heaviest spikes weight mean value, while “JDu100” produced the highest grains number. For molecular analysis, total genomic DNA was extracted from each genotype and then used for SNP genotyping using Illumina iSelect wheat 90k SNP chip. Structure analysis showed that the analyzed durum wheat panel can be divided into three genetically distinct subgroups. The GWAS analysis identified 93 significant markers-traits associations for multiple traits with two QTLs located at 7A and 7B, which seems important for TKW in durum wheat under dry environments. In conclusion, the Jordanian landraces used in this study showed wide genotypic and phenotypic variability, which can be considered by plant breeders for their future use in breeding programs.

Breeding of high yielding, rusts resistance and Zn-enriched wheat varieties for different agro-ecological zones of Pakistan

BGRI 2018 Poster Abstract
Maqsood Qamar Wheat Program, National Agricultural Research Center (NARC) Islamabad
Sikander Khan Tanveer, Muhammad Sohail, Muhammad Shahzad Ahmed, Sayed H. Abbass, Sundas Wagar, Atiq Rattu, Muhammad Imtiaz

Wheat plays a vital role in multifaceted farming system of Pakistan. Like other many other countries, Pakistan’s sustainable wheat production is also continuously threatened by a number of biotic and abiotic stresses. Among the biotic stresses, three rust diseases of wheat have been the most devastating. Stem rust was effectively controlled with adoption of the semi-dwarf spring wheats of the Green Revolution. However, the threat of the evolution of Ug99 race of stem rust in East Africa and its migration to Iran cannot be neglected. The Chance of of Ug99 migrating from Iran into Pakistan, coupled with the presence of dangerous new races of stripe and leaf rusts invites enormous efforts for development of rust resistant varieties for sustainable production of the wheat in the country. In this regard the Wheat Program, NARC, Pakistan initiated an intensive breeding program with financial and technical support of USDA and CIMMYT. Diverse sources of resistance to the three rusts particularly to the stem rust race Ug99 were introduced from CIMMYT. Through the rigorous selection procedure, four rusts resistant wheat varieties (NARC 2011, Pakistan 2013, Zincol 2016 and Borlaug 2016) have been released. These varieties are also resistant to Ug99. The varieties i.e. NARC 2011, Borlaug 2016 and Zincol 2016 are performing well in irrigated areas whereas Pakistan 2013 is suitable for rainfed conditions. The variety Zincol 2016 has high Zn content (35 ppm) in grain as compared to national standard check variety (25 ppm). These varieties are not only higher yielding but also possess good grain quality and other desirable traits. A considerable quantity of seed of the varieties is already present in the national seed system and will reduce the risk of Ug99 threat.

New QTL for leaf rust and stripe rust resistance in four bread wheat and two durum wheat mapping populations

BGRI 2018 Poster Abstract
Caixia Lan CIMMYT
Ravi,Singh, Julio, Huerta-Espino, Mandeep, Randhawa

Wheat leaf rust (LR) and stripe rust (YR), caused by the air-borne fungi Puccinia triticina (Pt) and Puccinia striiformis f. sp. tritici (Pst), respectively, are considered the primary biotic threats to bread wheat and durum wheat production globally. Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by these diseases. Bread wheat lines Francolin #1, Kenya Kongoni, Kundan and Sujata, and CIMMYT-derived durum wheat lines Bairds and Dunkler display an adequate level of adult plant resistance (APR) to both leaf rust and stripe rust in Mexican field environments. Six recombinant inbred line (RIL) populations developed from crosses Avocet/Francolin #1, Avocet/Kenya Kongoni, Avocet/Kundan, Avocet/Sujata, Atred#1/Bairds and Atred#1/Dunkler were phenotyped for leaf rust response at Ciudad Obregon, Mexico, and the bread wheat populations for stripe rust response at Toluca for under artificial inoculations for multiple seasons. The RIL populations and their parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. Known pleotropic APR genes Lr46/Yr29 mapped in all of six populations, and explained 7.4-65.1% and 7.7-66.1% severity variations for LR and YR across different bread wheat populations and accounted for 12.4-60.8% of LR severity variations over two durum wheat populations. In addition, several new APR loci identified on chromosomes 1AS, 1DS, 2BS, 2BL, 3D and 7BL in bread wheat and QTL on chromosome 6BL in durum wheat. Among these loci, QTL on chromosomes 1AS, 3D and 7BL might be represent new co-located/pleotropic loci conferring APR to LR and YR. RILs combining these APR loci can be used as sources of complex APR in both bread wheat and durum wheat breeding. In addition, the closely linked single nucleotide polymorphism (SNP) markers have been converted into breeder-friendly kompetitive allele specific PCR (KASP) markers and their diagnostic verified.

Evaluation and Selection of Wheat Lines for Biotic and Abiotic Stresses in Pakistan

BGRI 2018 Poster Abstract
Muhammad Imtiaz CIMMYT
Muhammad,Noor, Makhdoom, Hussain, Majid, Nadeem, Monsif, ur Rehman, Jesse, Poland, Ravi, Prakash Singh, Matthew, Reynolds

Drought and heat along with rusts are the most common biotic and abiotic stresses that affect growth, development and yield of wheat crop in Pakistan. CIMMYT in partnership with Wheat Research Institute Faisalabad (WRI-Fsd), USDA, and Kansas State University initiated an effort to develop heat tolerant, high yielding, and farmer-accepted rusts resistant wheat varieties for Pakistan. A set of 1656 wheat lines received in the form of EPCBW and SABWGPYT nurseries were tested in 2013-14 and 2014-15 wheat season, respectively. Testing of the materials at (WRI-Fsd), Pakistan under normal and late planting conditions resulted in the selection of 55 lines with higher grain yield and resistant to both leaf (LR) and yellow (YR) rusts. Among these lines, the line no. 1027 produced maximum yield (5.78 ton/ha) under normal and line no. 5030 produced maximum yield (3.38t/ha) under late planting conditions with resistance to both LR and YR. Further evaluation of the selected 55 lines as HYT-60 in 2015-16 showed the average grain yield ranged from 4.98 to 2.51 ton/ha under normal and 1.74 to 0.73 t/ha under late planting. Three lines HYT-60-57, HYT-60-7 and HYT-60-5 were included in the first year advanced yield trials to test for their potential as commercial cultivars while another seventeen lines were distributed as HYT-20 to six national wheat breeding programs for yield testing at key location which will enable national partners to combine yield potential with resistance to biotic and abiotic stresses.

Combining ability estimation for yield and yield related traits in Triticum aestivum

BGRI 2018 Poster Abstract
Nusrat Parveen Vegetable Research Institute AARI, Faisalabad, Pakistan.
Etlas,Amin

In the present study five bread wheat genotypes (9797, 9801, 9802, Chakwal-50 and Chakwal-86) were tested in a 5?5 full diallel analysis for the estimation of combining ability for yield and its related traits. In randomized complete block design (RCBD) twenty F1s along with their parents were planted in field with three replications in the research area of Department of Plant Breeding and Genetics, University of Agriculture, during 2014-15. Plant height, No. of grains/spike, spike length, No. of productive tillers/plant, flag leaf area, No. of spikelets/spike, 1000 grain weight and grain yield per plant were studied. Except spike length mean squares due to GCA were highly significant for all the traits. All the characters showed highly significant mean squares for SCA and RCA. SCA variance was lower than GCA variance for number of grains/spike and spike length presenting the major role of additive gene action in the inheritance of these traits. While for plant height, flag leaf area, number of spikelets/spike, number of fertile tillers/plant, 1000 grain weight and grain yield/plant the value of GCA variance was lower than the value of SCA variance exhibiting non-additive gene action. Chakwal-50 was the best general combiner for plant height, spike length, number of spikelets/spike, number of grains/spike and grain yield/plant. The best specific combination for most of the traits was 9802?Chakwal-86. In future wheat breeding research programmes, good specific and general combiners can be exploited.

Contribution of peduncle traits to grain yield under terminal drought and compensatory effect of stem reserve mobilization

BGRI 2018 Poster Abstract
Dejan Dodig Maize Research Institute Zemun Polje
Dragana Ranćić, Vesna Kandić, Biljana Vucelić-Radović, Jasna, Savić, Miroslav Zorć

When environmental stress develops during reproductive phases of growth, wheat plants have to rely increasingly on remobilisation of previously stored assimilates to maintain grain filling. The present study was undertaken to determine the effect of several peduncle (the uppermost stem internode) morpho-anatomical and biochemical traits on grain weight, and to assess the contribution of the peduncle water-soluble carbohydrate (WSC) reserves shortly after anthesis to its variation. In 2-year field trials, 61 wheat genotypes were used (27 F4:5 families, 17 parents used for the crosses and the 17 current best standards) comparing intact control plants (CP) with plants that were defoliated (DP) by cutting off all leaf blades 10 days after anthesis to simulate terminal stress. Estimated contributions of peduncle assimilate reserves to grain weight/spike were from 0.06 to 0.31% and from 0.11 to 0.45% in CP and DP plants, respectively. High peduncle reserve mobilization efficiency, a longer exposed part of the peduncle and larger peduncle storage capacity (through higher parenchyma and/or lower lignified area) were of specific benefit for maintaining grain weight in defoliated plants. There was a large difference in compensation of grain yield loss by dry matter remobilization within studied genotypes (in average 1.2-36.1%). Although compensation of yield loss might be improved through breeding process (our F4:5 families had slightly higher mean compensation effect than their parents under moderate stress), it does not mitigate the effect of post-anthesis drought in great extent (up to 38.4%).

Introgression of Sr50 and SrWeb genes in hexaploid wheat using molecular markers for enhancing stem rust resistance

BGRI 2018 Poster Abstract
Punam Singh Yadav Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
Vinod Kumar Mishra, Uttam Kumar, Ramesh Chand, Akhilesh Mishra, Arun Joshi

Ug99 is a devastating race of Puccinia graminis f.sp. tritici possessing virulence against resistant genes Sr31 and Sr24. This race is highly adoptive and has spread quite rapidly with 13 known variants covering 13 different countries. For reducing the vulnerability of wheat in south Asia to the Ug99, breeding durable resistant varieties is important. India, second largest wheat producer, falls in the predicted pathway of Ug99. Most of the Indian germplasm possesses Sr31 and Sr24 in their background. HUW468, a well adopted variety of north eastern plains zone (NEPZ) of India, carries durable resistance gene Sr2. To strengthen it, a MABB program was initiated to introgressed two major genes (Sr50 and SrWeb) using a donor line PMBWIR4 from CIMMYT. The foreground selection was performed with Xgwm47 for SrWeb and IB267 for Sr50 followed by the background selection by using 128 polymorphic SSR markers covering all chromosomes. Backcross progenies of HUW468 were screened in the field condition by using of Pgt race 21A-2 at IARI, Regional Station, Indore located in the central India. Superior selected lines from BC2F4:5 generation was planted at three locations in India namely; Varanasi, Indore and Dharwad. HUW468-09-25-47-09 and HUW468-09-25-47-56 were selected from BC2F5 generation having Sr50 and SrWeb along with Sr2 gene, superior agronomic performance and with 93.5% and 92.7% genome recovery, respectively. These two lines also possess 6-10 % yield superiority over the recipient parent HUW468. These lines have been submitted for registration in NBPGR (National Bureau of Plant Genetic Resources), India.

Status and strategies for averting the threat of yellow rust (Puccinia striiformis Westend.) in North Indian states

BGRI 2018 Poster Abstract
D. P. Singh ICAR-Indian Institute of Wheat and Barley Research
Sudheer Kumar, P.L. Kashyap, Gyanendra Pratap Singh

Yellow rust of wheat caused by Puccinia striiformis Westend. is one of the important diseases of wheat in India. In north Indian states it spreads quite fast due to favourable temperature and moisture prevailing in these states during major part of crop growth (November-mid March). In spite of favourable weather, proactive survey and surveillance and advisories issued in time resulted successful management of yellow rust in India during past four decades. Even large scale cultivation of varieties like HD 2967 in about 12 million ha past two years did not result any losses. Three spots of initial foci near foot hills in Punjab have been identified and are monitored regularly. Any sign of yellow rust is controlled effectively with the foliar sprays of fungicides like propiconazole @ 0.1%. Use of mobiles phones and internet services is regularly done for transfer of information on wheat crop health and suggestions for proper management. Strategic planting and sowing of wheat in which newly released high yielding yellow rust varieties helped in reducing the yellow rust inculum build up. Regular monitoring of wheat health via weather forecasts take place after every fortnight from December to March. During 2016-17 crop season, yellow rust was effectively managed and its occurrence was delayed in Punjab, Haryana and Uttarakhand states. Two new pathotypes, 110S 119 and 110S 84 developed recently were used for evaluation of entries of wheat yield trials during 2016-17 at hot spot locations. The new varieties in pipe line of identification and release are tested against yellow rust. The most critical period for yellow rust management remained from December till mid February.

Adaptability of Wheat Varieties in Strongly Acidic Soils of Sylhet in Search of Low pH Tolerant Wheat Variety

BGRI 2018 Poster Abstract
Ataur Rahman Wheat Research Centre, Bangladesh Agricultural Research Institute

The soils of the entire Sylhet region of Bangladesh are strongly acidic where lands remain fallow during winter season due to scarcity of irrigation water required for rice cultivation. There is a scope of wheat expansion in this region as the water requirement of wheat is less than Boro rice. Field experimens were carried out at South-Surma, Sylhet, in 2012-13 and at FSRD site Jalalpur, Sylhet in 2013-14, in collaboration of WRC and OFRD. BARI examined the response of seven wheat varieties at two levels of lime in split-plot design where lime was applied in main plots and different wheat varieties were grown in sub-plots. The seeds were sown on December 05, 2012 and November 30, 2013 for the growing season of 2012-13 and 2013-14, respectively. The wheat varieties used in this study were Shatabdi, Sufi, Sourav, Bijoy, Prodip, BARI GOM 25 and BARI GOM 26. The index of relative performance of each variety in comparison to mean yield of all varieties under the contrast conditions of liming and non-liming was estimated to determine relative adaptability of wheat variety under experimental soil conditions. The result indicated that most of the yield components viz. spikes/m2, thousand grain weight and grain yield of wheat were significantly improved by liming for both the years and locations. There were variations in lime response among the wheat varieties. The index of relative adaptability (IRA%) for yield of BARI GOM 26 and Bijoy was more than 100% for both the years. The result indicated that these two wheat varieties are relatively tolerant to low pH and could be adapted in acidic soil of Sylhet.

Innovative manufacturing of a cereal rust inoculation device

BGRI 2018 Poster Abstract
Zak Pretorius University of the Free State
Gerrie Booysen, Willem Boshoff, Jozua Joubert

Urediniospores of rust fungi can be applied to cereal plants in several ways. Depending on the objective and available infrastructure, plants can be inoculated with a suspension of spores in either water, light mineral oil (e.g. Soltrol 130®) or engineered fluid (e.g. Novec 7100®). Alternatively, dry spores can be allowed to settle on plant surfaces by dusting or directly applied with a spatula or small brush. Several rust laboratories employ a system where a spore-oil suspension, contained in a gelatin capsule, is sprayed onto seedling leaves by means of a dedicated atomizer connected to an air pressure source. Although this approach is easy to use and highly efficient, the devices are not commercially available in South Africa. Locally, these inoculation appliances need to be manufactured by a conventional milling process that requires a specialized workshop and skilled personnel. This subtractive process is labour intensive and greatly prohibitive in terms of costs. Using a process called Additive Manufacturing (AM), also known as “3D printing”, the body of an inoculator was digitally designed and then laser sintered in nylon. Loose powder was removed from flow channels by compressed air. A copper tube fitted afterwards connected the nylon body with the spore suspension in the capsule. Replicated inoculation tests of wheat seedlings with urediniospore bulks or single pustule collections of Puccinia triticina and P. graminis f. sp. tritici resulted in consistent levels of rust severity and infection frequency. Cleaning of inoculators in acetone for 1 min followed by a 1 h heat treatment at 60°C produced no contaminant infection in follow-up tests. The design has been registered in South Africa, the USA and Europe.

High yielding bread wheat cultivar Alaa with potential to retard rust spread in rain-fed and irrigated zones of Iraq

BGRI 2018 Poster Abstract
Emad Al-Maaroof Sulaimani University,IKR, Iraq

Rusts continue to cause significant losses in grain yield of wheat in Iraq. Substitution of susceptible cultivars with resistant ones is an important step in reducing the vulnerability of the wheat crop. The present study represents a breeding program to develop high yielding bread wheat cultivars with resistance to brown rust and yellow rust. The performance of 265 spring wheat genotypes representing an international bread wheat-screening nursery from CIMMYT were evaluated in different agro-ecological zones in comparison with local commercial cultivars. Adult plant stage screening of the materials for brown rust and yellow rust reaction under inoculated conditions for three successive seasons identified 29 resistant and 59 moderately resistant genotypes, and 79 genotypes out-yielded the local cultivars. The selected lines were comprehensively evaluated for grain yield potential and disease response in different locations and agro-systems. Among 13 genotypes line 172 was selected for higher grain yield than local commercial cultivars in the presence and absence of both diseases. Mean coefficients of infection on line 172 were 0.57 and 5.35 to brown rust and yellow rust, respectively. It was also moderately resistant to common bunt. Yield potential of the new cv. Alaa was 9-20% higher than the commercial local cultivars Araz, Tamuz 2 and Adana. Alaa was registered and released by the National Committee for Registration and Release of Agricultural Cultivars according to order no. 39, 30/10/2017 as a new cultivar with high yield potential and resistance to brown rust and yellow rust. Great emphasis was made on multiplication and delivery of seeds to farmers. Grain yield potential of Alaa on a farm scale is 3,372 Kg/ha under rain-fed conditions and 5,024 Kg/ha under irrigated conditions.

Study of the effect of planting date on the severity of yellow rust disease on bread wheat in northeastern Syria

BGRI 2018 Poster Abstract
Omran Youssef University of Hohenheim, Germany
Afrem,Issa, Helim, Youssef, Nawzad, Suleiman, Abdul Rahman, Issa, , , , , , , , , , , , , , , , , , , , , ,

Wheat is grown in Syria during the November-December. Wheat is exposed to many strains that negatively affect its productivity especially rust diseases, which was reported on wheat in Syria for many years and the most severe in 2010, Therefore, we studied the effect of planting dates on the severity and development of yellow rust disease. Where the field trials of the 2010-2011 season were carried out at the two locations in northeastern of Syria: Al-Qamishli Research Center and Yanbouh Research Station in Al-Malekia. By cultivating the susceptible bread wheat Cham 8, where six dates were planted starting from 02.10. 2010, a difference of 15 days. The results showed there was a difference in the severity of the yellow rust disease according to the dates of cultivation and thus the stages of growth in the plant and this was evident in the Yanbouh location where the onset of the onset of injury on 08.04.2011 in the all dates and developed the infection to 40S degrees and 30%. Also, on the 24. 04. 2011, the infection was recorded at the Qamishli location only on the third and fourth dates. The disease did not develop more than 10S and 10% due to climatic conditions due to rain and high temperature during the season. The results showed a positive correlation between the evolution of the disease and vegetative growth of plants, where the growth of plants was more active at the site of Yanbouh, especially in the second, third and fourth dates in the development of infection on plants in the rest of the dates because of weak and slow growth of plants.

Virulence of Puccinia striiformis f. sp. tritici Population to 18 NILs in Yunnan Province, China

BGRI 2018 Poster Abstract
Mingju Li Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, China
Xianming Chen, Anmin Wan, Jiasheng Chen, Mingliang Ding

Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most destructive disease of wheat worldwide. Breeding and planting resistant cultivars is the most economic, effective, as well as environmental methods to control the disease. Yunnan is a severe epidemic zone in China, which provides new incursions for other parts of China. Study on virulence of the Pst population and effectiveness of resistance genes, will provide information for breeding and rational use of resistance genes. One hundred and thirty-six136 isolates collected from 9 regions of Yunnan were tested using a set of 18 Yr NILs with genes Yr1, Yr5, Yr6, Yr7, Yr8, Yr9, Yr10, Yr15, Yr17, Yr24, Yr27, Yr32, Yr43, Yr44, YrSP, YrTr1, YrExp2, YrTyTye. Stripe rust races were named by octal code. The results showed that the Pst population in Yunnan is highly variable in races and virulence. A total of 64 races were identified and the top two most frequent races were 550273 (Virulence/Avirulence formula: 1, 6, 7, 9, 27, 43, 44, SP, Exp2, Tye / 5, 8, 10, 15, 17, 24, 32, Tr1 and 550073(Virulence/Avirulence Formula: 1, 6, 7, 9, 43, 44, SP, Exp2, Tye / 5, 8, 10, 15, 17, 24, 27, 32,Tr1), with frequency of 28.68% and 11.76%, respectively. The remaining races had frequencies less than 5.0%. No virulence were found for Yr5, Yr10, Yr15, and Yr32. The frequencies of virulence to Yr24, YrTr1, Yr8, and Yr17 ranged from 0.74% to 11.76%. The frequency of virulence to Yr27 was 52.94%; and virulence to Yr1, Yr6, Yr7, Yr9, Yr43, Yr44, YrSP, YrExp2, and YrTye ranged from 79.94% to 91.91%. The results will guide the breeding and wheat production. (This study was supported by National Natural Science Foundation of China, Grant No. 31260417 and 31560490)

A plasma membrane localized Cu-only superoxide dismutase boosts stripe rust fungus infection by scavenging host-derived ROS

BGRI 2018 Poster Abstract
Jie Liu State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling
Liyang Chen, Baoyu Huai, Shoujun Hu, Lijing Pang, Pu Yuan, Zhensheng Kang

Infection of pathogens in plants induces production and accumulation of reactive oxygen species (ROS). ROS are not only involved in plant defense responses, but directly restrict or kill pathogens. To counteract this attack, it is necessary for pathogens to remove host-produced ROS. However, the mechanisms protecting pathogens against host-derived oxidative stress are little known. In this study, a superoxide dismutase (SOD) gene, PsSOD2, was cloned from Puccinia striiformis f. sp. tritici (Pst). Quantitative reverse transcription PCR (qRT-PCR) analysis indicated that PsSOD2 is an in-planta induced gene active in the early stage of Pst infection. Prokaryotic expression and biochemical characterization revealed that PsSOD2 encoded a Cu-only SOD. The predicted signal peptide for protein secretion was functional in an invertase-mutated yeast strain. Transient expression in Nicotiana benthamiana suggested that PsSOD2 is localized in plasma membrane and dependent on glycophosphatidyl inositol (GPI) anchor at the C terminus. Furthermore, Size exclusion chromatography and bimolecular fluorescence complementation validated dimerization of PsSOD2. Overexpression of PsSOD2 in N. benthamiana significantly decreased ROS production triggered by flg22. Knockdown of PsSOD2 using a host-induced gene silencing (HIGS) system reduced the virulence of Pst, which was correlated to ROS accumulation in HIGS plants. These results suggest that PsSOD2 is a pivotal virulence factor that is localized in hyphal plasma membrane to promote Pst infection by scavenging host-derived ROS.

Characterization of wheat germplasm for leaf rust resistance using molecular markers and multi-location field testing

BGRI 2018 Poster Abstract
Muhammad Ismail The University of Agriculture, Peshawar, Pakistan
Muhammad Khan, Aamir Iqbal, Sher Nawab, Sohail Ahmed, Muhammad Imtiaz, Sajid Ali

Resistance breeding for wheat leaf rust requires testing of breeding materials under field conditions, which must be complemented with diagnostic molecular makers. A set of 28 exotic wheat lines from advanced CIMMYT material along with three check varieties (Siran, Atta-Habib, Ghanimat-e-IBGE) were tested at three contrasting locations (Peshawar, Mansehra and Lakki-Marwat) and were genotyped with markers linked to three Lr genes (LrPr, Lr37, and Lr34). The overall leaf rust pressure was low during the wheat season of 2015-16, with the maximum disease observed at Lakki-Marwat (up to 70%), followed by Peshawar (up to 50%) and the minimum disease at Mansehra (up to 30%). Despite the overall low leaf rust pressure, the germplasm behaved variably in terms of leaf rust resistance as revealed through average co-efficient of infection (ACI). According to ACI value, 16 out of 28 genotypes were completely resistant, while few genotypes showed partial resistance. The maximum CI value was recorded for wheat line W-SA-87, which was 55 at Lakki Marwat, 33 at Peshawar and 15 at Mansehra, while 18 lines had CI value of zero across the three locations. Variability existed in yield parameters with W-SA-84, W-SA-78 and W-SA-79 producing the better grain yield. Genotyping with Lr linked markers viz., STS-7 (LrPr), SC-Y15 (linked with Lr37) and csLV34 (linked with Lr34) revealed that among the tested lines LrPr was the most frequent (83.8%), present in 26 lines; followed by Lr37 (77.4%), present in 24 lines, while Lr34 was present in 16 lines (71.1%). All three genes were detected in 45% of the germplasm. Cluster analysis grouped the germplasm in four clusters based on both phenotypic and molecular markers data. The information generated in the present study would be valuable in resistance breeding for a better control of leaf rust disease in Pakistan.

Developing rust resistant bread wheat genotypes for warmer areas in India

BGRI 2018 Poster Abstract
Sanjay Kumar Singh ICAR- Indian Institute of Wheat & Barley Research, Karnal-132001, India
Vinod Tiwari, DP Singh, RP Gangwar, GP Singh

The changing climatic conditions are affecting wheat production in major agro-ecological zones in India, namely, north western plains(NWPZ), north eastern plains(NEPZ), central (CZ) and peninsular zone(PZ) where the reproductive phase has to endure higher temperatures. Also, the prevalence and virulence of rust pathotypes and other diseases are affected. To address such challenges, development of wheat for climate resilience was initiated following shuttle breeding approach for incorporating heat stress tolerance as well as resistance to wheat rusts. During 2010-16, a total of 583 elite lines were evaluated against prevalent pathotypes of stripe rust 78S84, 110S119, 110S84 and 46S119; leaf rust 12-2(1R5), 12-5(29R45), 77-2(109R31-1), 77-5(121R63-1), 77-9(121R60-1) and 104-2 (21R55) and stem rust 11(79G31), 40A(62G29), 42(19G35), 122(7G11) and 117-6(37G19) of which 108 promising entries were identified. These lines were evaluated for disease response in multilocational Initial Plant Pathological Screening Nursery (IPPSN) against prevalent races of all three rusts. Based on average coefficient of infection (15.0 ACI), 42 (39%), 104 (96%) and 90(83%) entries were found resistant to different races of stripe, leaf and stem rusts, respectively. Based on performance in multiplication yield trials, 29 entries were contributed in national coordinated evaluation system on Wheat & Barley which resulted in release of four wheat cultivars DBW71(Yr9+27+,Lr26+,Sr2+5+31+), DBW107(Yr9+,Lr26+3+,Sr31+), DBW110(Yr2+, Lr13+10+,Sr13+11+) and DBW93(Yr9+, Lr26+23+, Sr31+) for commercial cultivation in NWPZ, NEPZ, CZ and PZ, respectively. These cultivars are becoming popular among farmers due to their yield advantage, resistance to diseases, tolerance to high temperature and better quality traits. Also, DBW 129 was screened in multiple disease screening nursery (MDSN) and observed resistant to all rusts, leaf blight, powdery mildew, flag smut and shoot fly. The adoption of the newly developed cultivars for deployment of differential genes for resistance would lead to reduction in disease pressure and bring higher profitability to farmers in different agro-ecological zones in India.

MicroRNAs and their mega effects on gene expression in response to leaf rust in wheat (Triticum aestivum L.)

BGRI 2018 Poster Abstract
Summi Dutta Department of BioEngineering, Birla Institute of Technology, Mesra, Ranchi, India
Manish Kumar, Kunal Mukhopadhyay

Bread wheat (Triticum aestivum L.) being the world’s most popular edible cereal, plays a major role in global economy. Rust in wheat leaves, caused by Puccinia triticina, affects grain quality and severely retards its production worldwide. Micro(mi)RNAs are considered major components of gene silencing and so have a great role to play during stress. The present study focuses on identification of miRNAs, produced by host to suppress pathogen as well as delivered by pathogens to encounter host defence mechanism. Therefore, these miRNAs may be called as leaf rust responsive microRNAs. Small RNA and degradome libraries were prepared from a pair of near isogenic lines of wheat (HD2329, HD2329+Lr24), one set was mock inoculated while the other set was inoculated with urediniospores of leaf rust pathogen. Using these libraries as input a vast number of miRNAs rather a population of miRNAs were identified derived from wheat that were targeting genes mostly involved in functions like defense response, signal transduction, development, metabolism, and transcriptional regulation.
When reads specifically produced under pathogen inoculation were taken as input with Puccinia triticina genome sequences as reference, only three putative miRNA precursor loci were detected and the molecules produced were called miRNA-like molecules as their precursors lacked one or two criteria essential for a true miRNA precursor. The identified miRNAs were targeting genes like F-box protein, MAP kinase, calmodulin and susceptible antioxidant protein. We further identified the presence of argonaute and dicer like domains in Puccinia proteome available at FungiEnsembl which strengthens presence of RNAi-like activities in Puccinia.
In addition, differential expression of wheat as well as Puccinia small RNAs using stem loop RT-PCR under varying time points of disease progression (0-168 hpi) revealed their direct connection with stress responses.

Introgression of the coupled Sr2/Fhb1 for resistance to stem rust and Fusarium head blight into Uruguayan elite wheat cultivars

BGRI 2018 Poster Abstract
Miguel Raffo Instituto Nacional de Investigaci?n Agropecuaria (INIA)
Clara,Pritsch, Gustavo, Azzimonti, Silvia, Pereyra, Mart?n, Quincke, Victoria, Bonnecarrere, Paula, Silva, Ariel, Castro, Bettina, Lado, Silvina, Bar?ibar, Richard, Garc?a, Silvia, Germ?n, , , , , , , ,

Stem rust (SR) and Fusarium head blight (FHB) threaten the sustainability of wheat production worldwide. Sr2 is a widely used gene conferring partial, but durable, resistance to SR. Fhb1 confers a significant level of FHB resistance, but is poorly represented in the INIA-Uruguay wheat-breeding program. Sr2 and Fhb1 are linked in repulsion (~3 cM apart) on chromosome 3B. However, lines with Sr2 and Fhb1 in coupling were recently developed at the University of Minnesota, USA (kindly provided by J. Anderson). In order to incorporate Sr2/Fhb1 into Uruguayan elite wheat cultivars the donor line was crossed and backcrossed with four cultivars lacking both genes and expressing an intermediate to low level of resistance to SR and FHB: G?nesis 2375, G?nesis 6.87, INIA Madrugador, and INIA Don Alberto. Genotypes carrying Sr2/Fhb1 were selected using molecular marker UMN10; 250 BC2F1 were obtained for each recurrent parent. BC3F1 plants positive for UMN10 will be selected. The effect of Sr2/Fhb1 on response to SR and FHB in the different genetic backgrounds will be quantified by comparing disease severities of BC3F2 homozygotes with and without the UMN10 marker. Hopefully the introduction of Sr2/Fhb1 will contribute in reducing the risk of SR and FHB in wheat crops in Uruguay.

Genomic regions influencing yield stability in durum

BGRI 2018 Poster Abstract
MERYEM ZAIM University of Mohammed V/ICARDA
HAFSSA,KABBAJ, AYED, AL ABDALLAT, GREGOR, GORJANC, JESSE, POLAND, MIKAEL, MILOUDI NACHIT, AHMED, AMRI, BOUCHRA, BELKADI, KARIM, FILALI MALTOUF, FILIPPO, BASSI MARIA

Durum wheat (Triticum durum Desf.) is a major stable crop and it represents a base of the Mediterranean diet. This region is subject to a Mediterranean climate, which is extremely unpredictable with severe changes in moisture and temperature occurring each crop season. This unpredictability is summarized by breeders as GxE and the identification of traits controlling this interaction is quintessential to ensure stability in production season after season. To study the genetics of yield stability, four RILs populations derived from elite x elite crosses were assessed for yield and 1,000-kernel weights across five diverging environments in Morocco and Lebanon. These 550 RILs were characterized with 4,909 polymorphic SNPs via genotyping by sequencing. A consensus map was derived by merging the individual genetic maps of each population. Finally, imputation was used to fill all the missing haplotypes and reach a reduction of missing data to below 8%. Several significant QTLs were identified to be linked to TKW, grain yield and a stability index, namely AMMI wide adaptation index (AWAI). A second approach to identify loci controlling stability was the use of a global panel of 288 elites, accessions and landraces tested in 15 diverging environment. Multi-locations data were compiled via GxE models to derive the AWAI stability index. In addition, this panel was characterized with 8,173 polymorphic SNPs via Axiom 35K array. Significant associations were identified for all traits, including QTLs unique to AWAI. The sum of the identified QTLs can now be pyramid via marker assisted selection and molecular designed crosses in order to obtain very stable cultivars.

Characterization of wheat germplasm for leaf rust resistance using molecular markers and multi-location field testing

BGRI 2018 Poster Abstract
Muhammad Ismail The University of Agriculture, Peshawar, Pakistan
Muhammad Khan, Aamir Iqbal, Sher Nawab, Sohail Ahmed, Muhammad Imtiaz, Sajid Ali

Resistance breeding for wheat leaf rust requires testing of breeding materials under field conditions, which must be complemented with diagnostic molecular makers. A set of 28 exotic wheat lines from advanced CIMMYT material along with three check varieties (Siran, Atta-Habib, Ghanimat-e-IBGE) were tested at three contrasting locations (Peshawar, Mansehra and Lakki-Marwat) and were genotyped with markers linked to three Lr genes (LrPr, Lr37, and Lr34). The overall leaf rust pressure was low during the wheat season of 2015-16, with the maximum disease observed at Lakki-Marwat (up to 70%), followed by Peshawar (up to 50%) and the minimum disease at Mansehra (up to 30%). Despite the overall low leaf rust pressure, the germplasm behaved variably in terms of leaf rust resistance as revealed through average co-efficient of infection (ACI). According to ACI value, 16 out of 28 genotypes were completely resistant, while few genotypes showed partial resistance. The maximum CI value was recorded for wheat line W-SA-87, which was 55 at Lakki Marwat, 33 at Peshawar and 15 at Mansehra, while 18 lines had CI value of zero across the three locations. Variability existed in yield parameters with W-SA-84, W-SA-78 and W-SA-79 producing the better grain yield. Genotyping with Lr linked markers viz., STS-7 (LrPr), SC-Y15 (linked with Lr37) and csLV34 (linked with Lr34) revealed that among the tested lines LrPr was the most frequent (83.8%), present in 26 lines; followed by Lr37 (77.4%), present in 24 lines, while Lr34 was present in 16 lines (71.1%). All three genes were detected in 45% of the germplasm. Cluster analysis grouped the germplasm in four clusters based on both phenotypic and molecular markers data. The information generated in the present study would be valuable in resistance breeding for a better control of leaf rust disease in Pakistan.

Monitoring for wheat blast and rust pathogens in different agro-ecological zones of Punjab, Pakistan

BGRI 2018 Poster Abstract
Muhammad Makky Javaid Ayub Agricultural Research Institute, Faisalabad, Pakistan
Muhammad,Idrees, Faqir, Muhammad, Arshad, Mehmood, Majid, Nadeem, Saleem-ur, Rehman, Makhdoom, Hussain, Javed, Ahmad

Under changing climatic conditions, the emergence of new diseases or new races of existing diseases is a serious threat to global wheat production. Particularly, the presence of wheat blast in Bangladesh and stem rust race Ug99 in Iran, created a fearsome and intractable situation for Pakistan. A study was planned for monitoring and surveillance of the wheat blast and rust pathogens in wheat growing districts of Punjab, Pakistan during the cropping season 2016-17 as vigilance program. During the survey, one hundred and seventy one wheat fields of upper and central Punjab region were monitored and two types of Rusts (Leaf Rust & Yellow Rust) were recorded in varying intensity on different varieties of wheat. Out of 171 locations 86 spots were free from both types of rusts i.e. Leaf Rust & Yellow Rust, while the remaining locations were found to be infected with both leaf and yellow rust. However, all the surveyed fields were free from the stem rust infestation. Among the infected fields, 23 were infected by Leaf Rust while 63 fields were infected by Yellow Rust.The susceptible type of rust attack was noticed on old/ banned/ unapproved wheat varieties. Moderately resistant to resistant reaction was observed on newly approved varieties. The rust infected samples having S or MS type infection were collected for race analysis. Similarly, blast suspected samples were analyzed in laboratory and none of the tested samples showed the presence of wheat blast pathogen, which indicates no need to panic but vigilant in future.

Incidence and severity of rust diseases in Novosibirsk region, Western Siberia, Russia

BGRI 2018 Poster Abstract
Ekaterina Skolotneva The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences
Vyacheslav Piskarev, Irina Leonova, Ekaterina Bukatich, Elena Salina

Stem and leaf rusts affect the winter and spring wheat in the Novosibirsk region. During 2008-2017 leaf rust incidence was generally moderate, from 20 to 40%. A leaf rust outbreak occurred in 2015 when incidence increased up to 80%. Leaf rust severity on the ‘Thatcher’ NILs ranged from immune or resistant to highly susceptible host response with maximum severity of 90S. Lines carrying genes Lr17, Lr18, Lr24, Lr29, Lr35, Lr37, Lr44, and LrW remained almost free of infection for the whole time of inspection. Genes Lr12, Lr13, Lr28, Lr34, and Lr38 exhibited moderate resistance but they did not provide sufficient level of resistance in favorable conditions. Since race-specific genes Lr24 and Lr29 are still effective in the neighboring Novosibirsk and Omsk regions, they might be recommended for breeding purposes in Western Siberia.
In 2016 stem rust was more prevalent and widespread in the region than ever before. Disease incidence ranged between 4.5 – 60% with high severity up to 80S in six fields from seven observed locations. The 4th ISRTN and varieties carrying Sr31 of West Siberian germplasm were assessed in field trials to monitor the virulence of the local population. There was no virulence to Sr9b, Sr9e, Sr20, Sr28, Sr29, Sr33, Sr39, Sr40, SrWld, Sr2 complex. Possible virulence to Sr6, Sr11, Sr12, Sr13, Sr17, Sr24, Sr25, Sr30, Sr31, Sr35, Sr38, Sr44, Sr57 was observed with low frequency. Entries genotyped for gene Sr31 were scored as MS and S. However, follow up race analysis work is needed to determine the actual stem rust races present and confirm the suspected possible observed virulence on Sr31.

GWAS of field and seedling response to individual Pgt races reveals combinations of race-specific genes in spring wheat

BGRI 2018 Poster Abstract
Erena Edae University of Minnesota
Michael Pumphrey, Matthew Rouse

Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in contemporary North American spring wheat, genome-wide association analysis was conducted on 250 elite lines. The lines were evaluated in separate nurseries each inoculated with a different P. graminis f. sp. tritici race for three years (2013, 2015 and 2016) at Rosemount, Minnesota. The lines were also challenged with the same four races at the seedling stage in a greenhouse facility at the USDA-ARS Cereal Disease Laboratory. A total of 22,310 high-quality SNPs obtained from the Infinium 90,000 SNPs chip were used to perform association analysis. Markers strongly associated with resistance to the four races at seedling and field environments were identified. At the seedling stage, the most significant marker-trait associations were detected in the regions of known major genes (Sr6, Sr7a and Sr9b) except for race QFCSC where a strong association was detected on chromosome arm 1AL. Markers presumably linked to Sr6 and Sr7a were associated with both seedling and field resistance to specific races. A field resistance QTL on chromosome arm 2DS was detected for response to races RCRSC and TPMKC. A QTL specific to field resistance was detected for QFCSC and TPMKC on 2BL. The markers that showed strong association signals may be useful to pyramid and track race-specific stem rust resistance genes in wheat breeding programs. We postulated the presence of Sr2, Sr6, Sr7a, Sr8a, Sr9b, Sr11, Sr12, Sr24, Sr25, Sr31, and Sr57 (Lr34) in this germplasm based on phenotypic and marker data. We found that combinations of genes conferring resistance to specific P. graminis f. sp. tritici races accounts for the prevalent stem rust resistance in North American spring wheat.

Effect of host vernalisation, temperature and plant growth stage on wheat and triticale susceptibility to Puccinia striiformis

BGRI 2018 Poster Abstract
Julian Rodriguez-Algaba Aarhus University
Chris K. Sørensen, Rodrigo Labouriau, Annemarie Justesen, Mogens Hovmøller

Host vernalisation and temperature strongly affect the susceptibility of winter crops to pathogenic fungi. However, how the interaction of these environmental factors influence host susceptibility to Puccinia striiformis, the yellow (stripe) rust fungus, is poorly understood. An experimental system was developed to examine the effect of vernalisation, temperature regime (standard; 18 day/12 night °C and low; 12 day/6 night °C) and plant growth (seedling and adult plant stages) on changes in susceptibility of agronomically important winter wheat and triticale genotypes to P. striiformis races (‘Warrior’ and ‘Kranich’) highly predominant in several European countries. Host genotypes exposed to prolonged periods of low temperature, termed vernalisation, reduced disease susceptibility on specific winter host genotypes, although its effect differed considerably by the temperature regime and the P. striiformis race deployed. The influence of vernalisation on host susceptibility was more apparent at low temperature for the ‘Warrior’ race and at standard temperature for the ‘Kranich’ race. Triticale genotypes inoculated with the ‘Kranich’ race were particularly affected by the influence of vernalisation and temperature regime by displaying a shift towards reduced susceptibility at standard temperature. The effect of plant growth stage, i.e., vernalised seedlings versus adult plants, was most evident for the ‘Warrior’ race at standard temperature and at low temperature for the ‘Kranich’ race by revealing a lower infection type at the adult plant stage. The research findings presented here contributed to a better understanding of the role of environmental factors in host susceptibility. This, in fact, will aid in the development of more efficient early-warning systems and disease management strategies to the yellow rust fungus and in the decision making for the deployment of winter wheat and triticale genotypes.

Outbreak of Wheat Yellow Rust disease under Moroccan conditions during 2016-2017 cropping season

BGRI 2018 Poster Abstract
Abdelhamid Ramdani Institut National de la Recherche Agronomique INRA Morocco
Kumarse Nazari, David Hodson, Tine Thach, Julian Rodriguez Algaba, Mogens Støvring Hovmøller

Wheat rusts, notably yellow rust, are amongst the most damaging diseases on wheat in Morocco. The objective of this survey was to assess the incidence and severity of wheat rust diseases across Morocco. The survey was carried out during April-May 2017 where growth stage of wheat ranged from anthesis to physiological maturity. The severity and response rating for the adult plant field reaction to rusts were based on the modified Cobb scale. A total of 117 bread wheat fields were inspected. The survey revealed that the most prevalent disease was yellow rust (96 out of 117 fields). Leaf rust, SLD (Septoria Like Diseases) and to some extent root rot complex were less prevalent. Leaf rust was only observed in 8 out of 117 inspected fields and exhibited low severity. Stem rust was observed in only one field. Following the drought of 2016, the 2017 growing season was an epidemic year for yellow rust in Morocco. It was detected across all regions and 50% of inspected fields were highly infected. Those that were lightly or not infected were sprayed with fungicides up to two times. Almost all commercial bread wheat cultivars in Morocco are highly susceptible to yellow rust. Appearance of new virulent races is leading to the breakdown of resistance in major cultivars e.g., Arrihan, which had very few pustules of yellow rust in 2013 was highly susceptible in the last three years. Samples of yellow rust from 2016 revealed a new virulent race in all samples, temporarily designated Pst (new) [virulence pattern: [Yr-,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,Sp,AvS,-]. Thirty-four samples submitted to GRRC in 2017 were all of the same genotype, identical to the new race already detected in 2016. The results demonstrate that surveillance and genotyping/race phenotyping of samples may be important for early-warning and anticipatory breeding strategies.

Wheat rusts status and population structure across Pakistan during wheat growing seasons 2015-16 and 2016-17

BGRI 2018 Poster Abstract
Sajid Ali The University of Agriculture, Peshawar, Pakistan
Muhammad,Khan, Safi, Kathi, Zahoor, Swati, Manzoor, Hussain, Annemarie, Justesen, Muhamamd, Imtiaz

Considering the importance of wheat rust diseases in Pakistan and the recent identification of yellow rust pathogen (Puccinia striiformis f. sp. tritici) centre of diversity in Pakistan, the present study was designed to assess the status of three wheat rusts across the country during 2015-16 and 2016-17 and analyze the population structure of P. striiformis f. sp. tritici . A total of 451 fields (from 68 districts) were surveyed during 2016 and 480 fields (from 69 districts) during 2017. A high yellow rust pressure was present during 2016 throughout Pakistan, while it was predominant only in the Northern half during 2017. Leaf rust was present in the central part of the country, while stem rust was only found in the south. In Sindh province (located in the south), yellow rust was reported unexpectedly with high severity (>60%) on varieties like Kiran and Galaxy during both the years. A set of 513 samples of P. striiformis were genotyped with microsatellite markers to assess the population diversity and spatial structure. and infer on the cause of epidemics in the Sindh province. Population genetics analyses confirmed a recombinant population structure across all locations except the Sindh province, where relatively lower diversity and lack of recombination signature was revealed. At least five genetic groups were identified in the overall population, which were found across all locations, except Sindh province where one of the genetic groups was predominant. The P. striiformis population from Sindh province with low diversity that caused unexpected epidemics in a relatively warmer region needs to be further investigated for specific adaptation traits. Our results confirmed the high diversity across Pakistan, which lies in the Himalayan centre of diversity of the pathogen. This high diversity was present in locations without the presence of alternate host (Berberis spp.) and could potentially be associated with regular migrants from the Berberis zone into the whole country.

Isolation of wheat Yr26 sheds new insights into wheat resistance to Puccinia striiformis infection

BGRI 2018 Poster Abstract
Qingdong Zeng Northwest A&F University
Dejun Han, Jia Guo, Manuel Spannagl, Jianhui Wu, Aizhong Cao, Peidu Chen, IWGSC, Lili Huang, Jun Guo, Klaus Mayer, Zhensheng, Kang

Wheat cultivation in many regions faces threats by devastating fungal infections. However, wheat cultivar 92R137 shows resistance to Puccinia striiformis infection. To isolate the stripe rust resistance gene Yr26, an integrated transcriptomic and comparative genomics approach was undertaken. Near-isogenic lines of wheat (carrying Yr26 or not) infected with two Puccinia striiformis f. sp. tritici (Pst) (Virulence or avirulence to Yr26) were analysed in a dual detailed time series RNA-seq study. The emerging IWGSC refseq v1.0 genome assembly sequence serves as a valuable template and was also used for comparative genomics studies of the gene candidate region with the genome sequences of close relatives and wheat progenitors. Using bulked segregant analysis (BSA) to identify polymorphic SNPs between parent and resistant DNA (R-bulk) and susceptible DNA (S-bulk), flanking markers for Yr26 were identified. These two markers were mapped to the Chinese spring reference genome sequence, spanning a region of about 250 kb. The synteny analysis of this candidate region in CS chr1B with chr1A, chr1D, Wild Emmer Wheat (Td_chr1A and Td_chr1B) and Barley (chr1H) identified three candidate Yr26 genes. To detect gene candidates a dual time series RNA-seq analysis was performed. Genes differently expressed between rust susceptible (NIL-S) host lines and rust resistant (NIL-R) lines, carrying the Yr26 candidate gene were analysed. Both lines were inoculated with Pst carrying different avirulence factors (Pst-CYR32 and Pst-V26), compatible or incompatible with the corresponding wheat lines. Differential gene expression analysis (DEG) between compatible and incompatible interaction revealed DEGs in the wheat genome and in the Pst genome. From a network analysis of both wheat and Pst genes, we inferred connected co-expressed modules. Resulting modules showed particular enrichments for disease resistance, defense response to fungus and cell wall components.

Identifing candidate genes corresponding to Yr6 in wheat stripe rust by resequencing a population acquired from selfing an isola

BGRI 2018 Poster Abstract
Gangming Zhan State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University
Yuan Tian, Yan Meng, Hengbo Ma, Lili Huang, Zhensheng Kang

Stripe rust, caused by Puccinia striiformis Westend f.sp. tritici, is currently one of the most prevalent and damaging disease on wheat. Up to now, some genes in wheat which are resistant to wheat stripe rust have been cloned, but little is known about the corresponding avirulence gene according to the gene-for-gene hypothesis. A population containing 118 progeny isolates population acquired by selfing an isolate, PL17-7, with virulence to Yr26 was derived. Seventy-two progeny isolates were different in genotype depending on 92 simple sequence repeat (SSR) markers. The progeny population segregated for avirulence to Yr6 at one locus (3 avirulent :1 virulent ratio). The parental isolate and 72 of 118 progeny isolates were resequenced to find candidate avirulence genes corresponding to Yr6. Overall, 7.6 million reads per sample were obtained and mapped to the draft genome of a Chinese Pst isolate CY32. The median depth of coverage was 63.6 fold. For each isolate, between 97.6% and 98.1% of the sequence reads were mapped to the race CY32 genome, which covered between 87.3% and 95.4% of the reference genome bases. An average of 97357 single nucleotide polymorphisms (SNP) per isolate was found, which covered 8.1% of the reference genome. Different SNPs and Indels were found when isolates virulent and avirulent to wheat cultivar containing Yr6 were grouped into two groups. Though screening discrepant SNP and indel in these two groups, candidate avirulence genes corresponding to Yr6 may be found.

Towards delivery of suitably high yielding, stable, and rust resistant wheat genotypes in the stem rust hotspots of Kenya

BGRI 2018 Poster Abstract
Godwin Macharia Kenya Agricultural and Livestock Research Organization
Ruth Wanyera, Bernard Otukho, Bernice Waweru, Hellen Wairimu, Sridhar Bhavani

Emergence of Pgt race Ug99 and rapid proliferation of lineal highly virulent races imminently threaten Kenyan wheat. Devastating epidemics have led to huge losses among smallholder farmers who invariably are unable to spray appropriately and in situations where susceptible varieties are grown. To combat stem rust, the Kenya wheat improvement program seeks to release high yielding stable genotypes with suitable levels of disease resistance. Moreover, detection of genotypes that are adapted to rain-fed environments is an overarching objective. Six hundred and seventeen genotypes from various CIMMYT nurseries (PCBW, EPCBW, PCHPLUS, and 9th SRRSN) were selected based on plant type and reaction to stem rust at Njoro. The reconstituted nursery-KSRON, was sown in the main season of 2016 at Njoro and Timau for further evaluation. Forty red grained lines depicting R-MR infection types, severity of 30% or less, and average Thousand Kernel Weight of >40g were then selected to constitute a yield trial. At each of eight diverse environments, trials also comprising four commercial varieties as checks, were designed in RCBD, three replicates laid out in contiguous array of 8 rows x 10 m plots. Genotype (G), Environment (E) and GE interactions effects were estimated by fitting the AMMI model to yield data, supported by a biplot visualization of the results. Analysis revealed significant (P ?0.01) genotype (G), environment (E), and GE interactions. The first three principal components (PC) explained ~78% of the observed variation. Environment was the predominant source contributing over 85% to total sum of squares. The biplot pointed to at least four environments that were highly correlated. By classifying genotypes based on Shukla’s stability variance and Kang’s stability rating, six genotypes (R1402, R1411, R1424, R1481, R1484, and R1486) were deemed high yielding and stable, and thus suitable candidates for further testing through the release pipeline.

Aegilops tauschii contribution to disease resistance traits exceeds the contributions of the durum subgenomes in synthetic hexaploid wheat

BGRI 2018 Poster Abstract
Abdulqader Jighly La Trobe University
Reem Joukhadar, Sukhwinder Singh, Francis Ogbonnaya

Synthetic hexaploid wheat (SHW), generated by crossing Triticum turgidum (AABB) with Aegilops tauschii (DD), has been exploited in improving various traits in cultivated wheat. A number of recent studies decomposed the additive variance of different traits captured by multiple sets of variants (e.g. single nucleotide polymorphisms (SNPs) located on different chromosomes or genic/intergenic regions) in both human and animal quantitative genetics studies. In this research, we dissected the additive variance explained by the three subgenomes and seven homoeologous sets of chromosomes in SHW germplasm to gain a better understanding of trait evolution in newly synthesized wheat. Our SHW germplasm lines generated by crossing improved durum parents (AABB) with Aegilops tauschii (DD) parents were phenotyped for ten fungal/nematode resistance traits. The lines were genotyped by genotyping-by-sequencing and 6,176 SNPs were mapped with missing data of less than 20%. The D subgenome dominated the additive effects and this dominance affected the A more than the B subgenome. The D subgenome exhibited a 1.8-fold higher contribution than the A subgenome across all traits. This dominance was not inflated by population structure or by longer linkage disequilibrium blocks observed in the D subgenome. The cumulative effects of the three homoeologs in each set had a significant positive correlation with their cumulative explained additive variance. Moreover, an average of 70% for each chromosomal group cumulative additive variance came from one homoeolog that had the highest explained variance within the group across all ten traits. We hypothesize that structural and functional changes during diploidization may explain chromosomal group relationships as allopolyploids maintain a balanced dosage for many genes. Our results contribute to a better understanding of trait evolutionary mechanisms in SHW, and will facilitate effective utilization of wheat relatives in breeding.

Effect of multiple cycles of genomic selection on the wheat genome

BGRI 2018 Poster Abstract
Clay Sneller The Ohio State University
Nelly Arguello-Blanco, Mao Huang

Genomic selection facilitates rapid cycling through a breeding cycle by eliminating the need to phenotype prior to selecting superior parents and crossing among them. In winter wheat we can now complete a cycle of GS in about 12 months and two greenhouse seasons. Season consists of planting F1s from the previous cycle and selfing to obtain F2 seed. The second season involves planting and genotyping the F2s, predicting their value with GS, selecting and crossing the best, and harvesting the F1 seed. Our breeding program has completed five cycles of GS in one population primarily for grain yield, over the past five years. We have completed three cycles of GS for resistance to Fusarium Head Blight in a second population. Genotyping was done using genotyping-by-sequencing. This provides an opportunity to assess the changes in the population that have occurred as a result of this rapid cycling. These include 1) changes in genomic estimated breeding values for grain yield and FHB resistance, 2) effect of selection and drift on allele frequencies including fixation, 3) effect of selection on diversity and genetic relationships, and 4) changes in linkage disequilibrium. We are conducting these analyses and will present the results.

Detection of race-specificity of adult plant resistance to wheat stem rust

BGRI 2018 Poster Abstract
Erena Edae University of Minnesota
Bedada,Girma, Bekele, Hundie, Endale, Hailu, Getaneh, Wonderufael, Bekele, Abeyo, Ayele, Badebo, Pablo, Olivera, Yue, Jin, Gordon, Cisar, Matthew, Rouse

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a significant disease limiting wheat yield in Ethiopia. Wheat varieties such as ‘Digalu’ with single major-effect stem rust resistance genes have not exhibited durable resistance in Ethiopia. Identifying wheat lines with adult plant resistance (APR) has been proposed as a strategy to select for durable resistance. Our objective was to test the hypothesis that APR to stem rust is non-race-specific. We selected 31 wheat lines (including 10 durum and 21 bread wheat lines) that were susceptible as seedlings to Pgt races TTKSK, TKTTF, and TRTTF. These 31 wheat lines and Digalu were evaluated in 2014 and 2015 at the Kulumsa Agricultural Research Center, Ethiopia. The lines were planted in 1 m rows and replicated twice in separate single-race-inoculated nurseries. The three single-race nurseries inoculated with Pgt races TTKSK, TKTTF, and TRTTF were separated by at least 100 m and included selective spreaders. Plot yield, thousand kernel weight (TKW), and visual disease responses were measured for each plot. We used a least-squared means test to detect differences in coefficient of infection and TKW of each line across paired race comparisons. Lines ‘Park’, ‘CI11469’, and ‘CI12818’ displayed significantly different coefficient of infections between races TTKSK and TRTTF. For CI11469 and CI12818, this difference was validated by significant differences in TKW. Significant differences in TKW were also detected between various race comparisons for ‘ETHBW019’, ‘CI14798’, ‘CI15159’, ‘CI14618’, and ‘CI14094’. Our data demonstrated that APR in the selected germplasm was largely non-race-specific, but there were exceptions where race-specificity of APR was detected. These results have implications for resistance breeding and monitoring: testing of breeding material against prevalent Pgt races in target environments, not relying only on hotspot screening locations, and careful monitoring of deployed APR varieties are all warranted.

Genetics of leaf rust and stripe rust resistance in spring wheat cultivar 'Kijil'

BGRI 2018 Poster Abstract
Maricarmen Sandoval-Sánchez 1,3 Colegio de Postgraduados-Fitosanidad, Campus Montecillo, Texcoco, 56230, Estado de M?xico, M?xico
Julio Huerta-Espino, Ravi P. Singh, Caixia Lan, Sridhar Bhavani, Reyna I. Rojas-Martínez, Ignacio Benitez-Riquelme, Cristian Nava-Díaz, Mandeep Singh Randhawa

Leaf rust and stripe rust caused by the fungi Puccinia triticina and P. striiformis f. sp. tritici, respectively, are important diseases of wheat and represent a significant threat in most wheat producing regions worldwide. Growing resistant varieties and the identification and characterization of new sources of resistance are necessary to combat the threat from the evolving pathogen population. Bread wheat (Triticum aestivum L.) line ‘Kijil’ developed at CIMMYT showed adult plant resistance (APR) to leaf rust (LR) and stripe rust (YR). The genetic basis of the resistance was investigated using 198 recombinant inbred lines (RILs) derived from the cross of susceptible Apav#1 and resistant Kijil. Field phenotyping of parents and RILs were conducted at El Batón, Toluca and Ciudad Obregon, Mexico during 2016 and 2017. Pearson correlation coeffcients (P< 0.0001) were high for disease severities between two years of evaluations: LR (r= 0.90) and YR (r= 0.83). Correlations (r= 0.30-0.76) were also significant between LR and YR in all environments. Genetic analyses indicated that 3 to 5 genes of additive effects governed resistance to both rusts. RILs carrying the pleiotropic APR gene Lr46/Yr29/Sr58 showed 23 and 41% of disease severity for LR and YR respectively, whereas lines lacking it had 55 and 78% severities. RILs positive for Sr2/Yr30 showed 66% YR severity, whereas those negative displayed 78%. In addition, lines carrying the race-specific gene Yr17/Sr38 showed 28% YR severity in contrast to non-carriers that displayed 78% severity. We conclude that Kijil possesses a complex nature of resistance.

Stripe rust virulence in western Canada

BGRI 2018 Poster Abstract
Harpinder Randhawa Agriculture and Agri-Food Canada, Lethbridge, Alberta
Gurcharn Brar, Randy Kutcher, Raman Dhariwal

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat in western Canada. Although stripe rust was an issue in southern Alberta for many years, it became important in other parts of the country after a dramatic population shift in 2000, resulting from an invasive race. Sporadic epidemics of the disease are common and cause considerable loss, due to which, an intermediate level of resistance to stripe rust was required for new varietal registrations beginning 2017. Virulence surveys are of key importance in germplasm and cultivar development as they provide breeders and pathologists the information needed to better understand host-pathogen interactions and the effectiveness of Yr genes. Virulence characterization revealed a wide range of virulence phenotypes exhibited by 33 Pst races in western Canada, although only 2-3 races were predominant. The expression of Yr genes may differ between controlled conditions and natural field conditions as previously reported. Thus, stripe rust differentials and wheat cultivars grown in western Canada are also screened at multiple locations in every year. At present, all stage resistance genes Yr1, Yr4, Yr5, Yr15, Yr76, and YrSP are effective against the predominant Pst races, whereas at the adult stage under field conditions, Yr2, Yr17, Yr28, or those carried by Yamhill are also effective. Seedling resistance genes Yr7, Yr10, Yr17, or Yr27 were the most common in Canadian wheat cultivars. Of these, only Yr17 is effective under field conditions. Adult plant resistance genes Yr18 and Yr29 are carried by many cultivars, but are not effective under high disease pressure. The effectiveness of each resistance gene may vary between the eastern and western prairies of western Canada due to differences in virulence. Regular virulence surveys using contemporary and regional cultivars facilitate the development of rust resistant cultivars.

Rust resistance and inheritance pattern to stripe and leaf rust in elite wheat germplasm from North Hills of India

BGRI 2018 Poster Abstract
Shubhanshu Anubhav CSK Himachal Pradesh Agricultural University, Palampur, India
Aashima Bhateja, Ravi Sharma, Vijay Rana, Hanif Khan

Wheat crop is attacked by three rust diseases of which stripe rust, caused by Puccinia striiformis f. sp. tritici and leaf rust, caused by Puccinia triticina, are the most common causing greater yield losses. Thirty genotypes were studied for (APR) adult plant resistance and were evaluated in field conditions and controlled conditions. HPW 373, VW 20145, VL 3002, RKVY 231, VL 907, PBW 698 and HS 507 were found to be highly resistant to yellow rust at both seedling and adult plant stages. While, genotypes HS 490, HPW 314, HPW 360, RKVY 133, Raj 4362, DBW 113 and HPW 403 showing very low AUDPC values were found to be moderately resistant under field conditions. These lines are suggested for use in breeding program and some are in network trials for their direct release. Inheritance studies were carried out to decipher the genetics of seedling rust resistance in elite germplasm line HPW 373. The F2s were evaluated for seedling resistance against yellow rust (46S119, 78S84) and leaf rust (77-5-North American equivalent THTTM) races. Resistance in HPW 373 is controlled by single dominant gene against leaf rust (77-5) and stripe rust (78S84). Against stripe rust (46S119), resistance of HPW 373 is controlled by recessive gene. The findings are expected to contribute towards enriching diversity for leaf and stripe rust resistance in bread wheat improvement programmes.

Isolation of durable wheat stem rust resistance gene Sr26 and enhancement of its deployment

BGRI 2018 Poster Abstract
Jianping Zhang CSIRO Agriculture and Food, Australia
Timothy Hewitt, Peng Zhang, Zacharias A. Pretorius, Narayana Upadhyaya, Rohit Mago, Sambasivam Periyannan, Xiuying Kong, Burkhard Steuernagel, Brande H. Wulff, Evans S. Lagudah

Multiple rust resistance gene combinations are considered as a practical solution for providing durable rust resistance and preventing resistance breakdown arising from single gene deployment. The stem rust resistance locus Sr26, originally derived from Thinopyrum ponticum and introgressed into wheat as a chromosome translocation, is one of the very few genes conferring durable resistance for almost 40 years to all known races of stem rust, including the highly virulent stem rust race Ug99 (TTKSK) and its derivatives (Dundas et al. 2015). To understand the underlying mechanisms of its unusual long-term effectiveness and to explore allelic diversity in different Th. ponticum accessions for other functional alleles that may offer new sources of resistance, we used comparative genomics and gene capture techniques (Resistance gene enrichment sequencing, RenSeq) as complementary strategies for isolating the target gene (Steuernage et al. 2016). Sr26 region was first mapped using NB-LRR (Nucleotide-binding site and leucine-rich repeat) sequences from the orthologous gene members located on the long arm of chromosome 6D from Aegilops tauschii (the D-genome donor of wheat) reference genome. Subsequently, we revealed a cluster of NB-LRR sequences located at the distal end of the Th. ponticum introgression segment that were absent in the smallest interstitial Sr26 deletion mutant. Therefore, we substantially narrowed down the genetic interval for Sr26. In addition to this approach, we subjected the mutant population to RenSeq pipeline. A candidate gene of Sr26 has been successfully identified to be a NBS-LRR type resistance gene. Validation of the gene candidate by complementation studies is currently in progress. In order to enhance durable resistance, genetic stocks of Sr26 from different backgrounds as well as a panel of Sr26-APR (Adult Plant Resistance) gene combinations have been generated to further investigate the resistance response of Sr26 in combination with different multi-pathogen APR genes.

SAARC Tool Box: an approach to manage wheat rusts disease in Nepal

BGRI 2018 Poster Abstract
Baidya Nath Mahto Nepal Agricultural Research Council (NARC)
Suraj Baidya, Dhruba Bahadur Thapa, Roshan Basnet, Sunita Adhikari, Prem Bahadur Magar, Ajaya Karkee, Nabin Dangal, Basistha Acharya, Ram Bahadur Khadka, Junga Bahadur Prasad, Purusottam Jha, Laxman Aryal, Prakash Pantha

Rusts are one of major threats to reduce wheat production and productivity in Nepal. Rust fungi are obligate parasite survival during off-season either on voluntary wheat plants or other grass or timber plant species is not yet confirmed in Nepal. High-inputs, suitable hosts and existence of warm humid and cool high lands in different parts of country promote carryover of inoculums of rust fungi. Nepal could be potential sources of yellow rust and leaf rust epidemic for itself and for Indian sub-continent. Surveillance is one of important steps to know status of wheat diseases especially rusts occurrence in country. The SAARC rust tool box is systematic and regular monitoring activity of wheat and barley diseases conducted at various locations in Nepal. Altogether, 183 and 180 locations were surveyed in different parts of Nepal were put in global rust tool box server and validated in fiscal years 2014/15 and 2015/16. Wheat rusts disease scenario has been observed differently, it could be due to climate change and different virulent spectrum of races/pathotypes of rusts fungi and deployment of different wheat varieties. Yellow rust was widely occurred throughout mid hills in Nepal. Higher severity of yellow rust was observed in Kathmandu valley (80S -100S). Leaf rust was moderate to high (10MS-100S) in plain and hills. There was higher score of leaf rust observed in plain as well as in mid hills on susceptible wheat cultivar. Regular monitoring and surveillance at different locations in Nepal has been found helpful in digging out actual problems of wheat crop. Monitoring races of all three rusts occurring in Nepal is necessary for successful planning to manage rusts by deploying effective genes. Rust tool box is important to keep vigilance of new emerging rust races in country. This in turn could increase production and productivity of wheat in Nepal.

Developing an enriched wheat 2A chromosome map and mapping of Adult plant stripe rust resistance gene

BGRI 2018 Poster Abstract
Suruchi Jindal Punjab Agricultural University
Parampreet,Kaur, Preeni, Bawa, Bharat, Yadav, Ajay, Mahato, Inderjit, Yadav, Priti, Sharma, OP, Gupta, Parveen, Chhuneja, NS, Bains, Jaroslav, Dolezel, Bikram Singh, Gill, J, Khurana, NK, Singh, Kuldeep, Singh, Kelly, Eversole

Diploid A genome wheat species harbor immense genetic variability which has been targeted and proven useful in wheat crop improvement. Further, the development and deployment of sequence based markers in wheat using survey sequences from next generation sequencing has opened avenues for comparative analysis, gene transfer and marker assisted selection (MAS) using high throughput cost effective genotyping techniques. Chromosome 2A of wheat is known to harbor several economically important genes. The present study aimed at in silico identification of genes corresponding to full length cDNAs and mining of SSRs and ISBPs from 2A draft sequence assembly of Chinese Spring for marker development. In totality, 1029 primer pairs (478 gene based, 501 SSRs and 50 ISBPs) were used to screen for polymorphism in diploid A genome species i.e., T. monococcum and T. boeoticum that identified 221 polymorphic loci. Out of these, 119 markers were mapped in T. monococcum X T. boeoticum RIL population. The enriched 2A genetic map constituted 161 mapped markers with final map length of 549.6 cM. Further, the utility of this enriched genetic map was demonstrated towards the fine mapping of adult plant resistance (APR) QTL, QYrtm.pau-2A against stripe rust. Using composite interval mapping, a QTL was detected between G45 and G54 markers explaining 19% of phenotypic variance. The primer sequences of the two genic markers were used to find the scaffold of 343 kb from IWGSC WGA V0.4 data. Thirty five simple sequence repeat markers were designed from the scaffold sequence which are being used for the fine mapping of QYrtm.pau-2A.

Migration of Puccinia triticina hit renowned across countries and continents

BGRI 2018 Poster Abstract
Younas Sohail Department of Botany, Faculty of Biology, Government College Murree, Pakistan
Barkat Ali, Muhammad Fayyaz, Atiq ur Reman Rattu, Abdul Samad Mumtaz, Muhammad Imtiaz

The new arrival of wheat rust pathotypes through migration during wheat cropping season requires regular monitoring to secure wheat production. In the present study, we collected leaf rust (Puccinia triticina Eriks.) infected wheat leaves from three major wheat growing provinces of Pakistan in the year 2014 to assess the haplotype diversity of P. triticina (Pt) isolates. The rDNA ITS sequence data of collected isolates was used in NCBI BLAST analysis. The blast hits showed best matches with Pt accessions EU014050 (Iran), JN120331 (Iran), JX533577 (Iran), AY956549 (Iran), DQ417412 (Czech Republic), DQ417418 (Israel), DQ417413 (Slovakia) and AF511083 (Louisiana). However, in cluster analysis, the Pakistani isolates showed strong bootstrap support with only Iranian and Indian (races 77-5 & 104-4) accessions that indicated eastward migratory mode of Pt pathotypes in Pakistan through westerly wind patterns. The predominant genotype DQ417412 (similar in alignment with AY956549 from Iran) overcome the resistance of top Pakistan mega varieties Seher06, Inqilab91, Kiran95, SKD1, TJ83 and NIFA-Batoor. Hence, the ITS based information remains a rapid molecular tool for pathogen surveillance across countries and continents.

Summary on the pathogenic variability of wheat rusts in Lebanon over the period 2009-2017

BGRI 2018 Poster Abstract
Rola El Amil Lebanese Agricultural Research Institute
Claude de Vallavieille-Pope, Marc Leconte, Mogens Hovmøller, Kumarse Nazari

Wheat rusts, caused by the fungal pathogen Puccinia sp. are serious economic diseases of wheat worldwide. Surveillance, monitoring and new virulence identification are prerequisites for future race prediction and for effective breeding programs. Therefore, we decided to compile the endeavours done for surveillance over eight cropping seasons in Lebanon. The extensive field surveys were conducted yearly in major bread and durum wheat areas over the period 2009-2017 using the Borlaug Global Rust Initiative surveillance protocols. Over eight years, 136 locations were surveyed, 56 samples were collected from mainly stripe and stem rust, and X samples were phenotyped using a robust set of standards differentials lines used worlwide at Tel Hadya – ICARDA, 6 phenotyped at INRA – Grignon, 4 phenotyped at the Global Rust Reference Center (GRRC), until the season 2015-2016 the cereal rust laboratory at LARI became autonomous in race analysis. Six samples were genotyped. The latest phenotyping showed that pathotypes had combinations of the virulence for the widely deployed genes Yr2, Yr6, Yr7, Yr8, Yr9, Yr25 and Yr27 resembling to the aggressive strain PstS2, the invasive high temperature tolerant isolate. Resistance genes Yr1, Yr3, Yr4, Yr5, Yr10, Yr15, Yr17, Yr32, and YrSP were effective against all isolates. Race typing of the stem rust sample using the North American stem rust differential sets indicated presence of TKTTF in surveyed wheat growing areas as well as at ICARDA’s research station in Terbol. Identified races have been used in field artificial inoculation of ICARDA’s breeding program during the last two years. In conclusion, the races PstS2 and TKTTF were the dominant prevalent races in the country for yellow and stem rust respectively. This information could be useful for the region for better integrated disease management and wider diversification of resistance genes deployment in breeding programs.

Occurrence of the Warrior Race of Wheat Stripe Rust (Puccinia striiformis f. sp. tritici) in Egypt, 2015

BGRI 2018 Poster Abstract
Atef Shahin Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Egypt.
Wasif Youssif, Mohamed Hasan

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, [Pst] is a widespread and damaging disease of wheat (Triticum aestivum L.), causing significant losses in yield and quality. During the 2015, eight stripe rust physiological races were identified in greenhouse tests i.e. 0E0, 6E4, 70E20, 128E28, 134E244, 143E245, 250E174, and 450E214. Race 0E0 was the most common and avirulent race, and races 143E245, and 450E214 had high virulence on most of tested Yr resistance gene wheat lines. In the same season, an unusual stripe rust infection occurred in spring wheat at Sakha region in Egypt. Some of the most important commercial cultivars such as (Misr 2, Giza 168 and Sakha 61), known as resistant to the previously characterized races of Pst in Egypt have become susceptible under field conditions. Infections of stripe rust was observed on some wheat lines with Yr genes previously known to be resistant, such as Yr1, Yr17 and Yr32, in a yellow-rust trap nursery at Sakha (30.601400? N, 31.510383? E), northern Egypt. Independent race analysis of collected samples from four governorates i.e. Kafrelsheikh, Al-Sharqia, Dakahleia and Damietta at Sakha Agricultural Research Station in Kafrelsheikh confirmed the detection of a new Pst race in Egypt. Aggressive races with virulence to Yr27 were detected on differentials with Yr27 (Yr27/6*Avocet S), and (Ciano 97) during the 2012 in Egypt. In addition, the Warrior race (virulent on: Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr32, and YrSp) was observed in the 2015 crop season, which indicated continued changes in the Pst the population. In Europe, the Warrior race first identified in 2011 in the United Kingdom, has caused significant change in yellow rust susceptibility of several varieties of both wheat and triticale. In a conclusion, some of wheat cultivars, known to be resistant, were shifted to susceptible due to these new races.

Genes Sr2/Yr30 and Lr34/Yr18/Sr57 interact to confer enhanced adult plant resistance to the three rust diseases of common wheat

BGRI 2018 Poster Abstract
Mandeep Singh Randhawa International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico D.F., Mexico
Ravi P. Singh, Caixia Lan, Bhoja R. Basnet, Sridhar Bhavani, Julio Huerta-Espino, Kerrie L. Forrest, Matthew J. Hayden

Common wheat Arula displays an acceptable level of adult plant resistance (APR) to stripe rust (YR), leaf rust (LR) and stem rust (SR) in Mexico, and to SR (Ug99 races) in Kenya. A recombinant inbred line (RIL) population developed from the cross of Arula with susceptible parent Apav was phenotyped under artificially created epidemics of the three rusts in 2014, 2015 and 2016 in Mexico and for SR during the off and main seasons of 2015 in Kenya. The RIL population and parents were genotyped using an iSelect 90K SNP array and 3 gene-linked markers (Sr2/Yr30-gwm533; Lr34/Yr18/Sr57-csLV34; Lr68-csGS), and a genetic map of 2,634 markers was constructed to locate the resistance loci. Two consistent QTL contributed by Arula were detected on chromosomes 3BS and 7DS, which corresponded to the previously known APR genes Sr2/Yr30 and Lr34/Yr18/Sr57, respectively. Sr2/Yr30 explained 1.1-14.7% and 41.0-61.5% of the phenotypic variation for YR and SR, respectively; whereas Lr34/Yr18/Sr57 accounted for 22.5-78.0%, 40.0-84.3% and 13.8-24.8% of the phenotypic variation for YR, LR and SR, respectively. Arula was also found to carry the positive allele for marker csGS closely linked to gene Lr68 on chromosome 7BL, although this gene was not detected using composite interval mapping. Our results show that RILs possessing both Sr2/Yr30 and Lr34/Yr18/Sr57 had significantly enhanced APR to all three rusts in field trials conducted in Mexico and Kenya. Strategic utilization of these two pleiotropic, multi-pathogen resistance genes with other minor genes is recommended to develop durable rust resistant wheat cultivars.

Genotype by sequencing for the study of population genetics in Puccinia triticina

BGRI 2018 Poster Abstract
Meriem Aoun Department of Plant Pathology, North Dakota State University, Fargo, ND
James,Kolmer, Maricelis, Acevedo

Leaf rust, caused by Puccinia triticina Erikss. (Pt), is the most widespread wheat rust disease. Information on the virulence and genetic diversity of Pt is important for understanding the pathogen evolution, and thus effective management of wheat leaf rust. We used 20 Thatcher wheat near isogenic lines to study virulence diversity of 102 Pt isolates collected from tetraploid wheat, common wheat, and Triticale worldwide. Seven races were found among 57 isolates collected from tetraploid wheat while 21 races were observed among 40 common wheat type isolates. Four races were identified among the five isolates collected from Triticale. A subset of 30 Pt were genotyped using the Restriction-Associated DNA (RAD)-Genotype By Sequencing (GBS) adapted for the Ion Torrent sequencing platform. Phylogenetic analysis on 30 isolates using 2,125 SNP markers showed eight clusters supported by high bootstrap values. We observed higher genotypic diversity in common wheat type isolates compared to that in tetraploid wheat type isolates. Generally, there was a correlation between virulence phenotypes and SNP genotypes. Phylogeny results suggest that RAD-GBS is promising as a new technique for the study of population genetics in P. triticina.

A systematic genetic and genomics approach to achieve durable rust resistances in wheat

BGRI 2018 Poster Abstract
Wentao Zhang National Research Council of Canada (NRC)-Saskatoon
Kerry Boyle, Tammy Francis, Peng Gao, Brittany Polley, Christine Sidebottom, Brent McCallum, Harpinder Randhawa, Tom Fetch, Randy Kutcher, Sylvie Cloutier, Pierre R. Fobert

Most rust resistant genes in wheat are race-specific (R), with relatively few genes conferring resistance only at the adult stage that have been described as slow rusting genes (APR). Pyramiding multiple R, APR or APR+R genes has been used successfully over many years to achieve durable rust resistance. To further enhance this strategy, a genetic genomics approach was exploited to identify genes with different resistant mechanisms and the most effective gene pyramids.
Several new combinations of rust genes were created and tested in the Thatcher background, revealing synergistic (“booster”) effects involving Lr21 with Lr16. With QTL mapping approach, we found that genes combined from 7D, 1B and 7B conferred an almost immune response to leaf rust, while genes from 7D, 1B and 3B provided an almost immune response to stripe rust. With a genomics approach, a large scale transcriptome analysis was conducted on key rust resistant genes including six R genes, three APR genes and one gene pyramid with Lr34+Lr16 over a time series during the infection process of both seedlings and adult plants. Detailed transcriptome analysis of gene expression associated with different major and minor leaf rust genes, alone or in combination, identified common and unique aspects of defense responses. For example, Lr9 is different from the other three leaf rust genes tested, with resistance triggered at a very early stage, consistent with pre-haustorial resistance. R genes Lr21 and Lr16 were also significantly different compared to other R and APR genes. With gene co-expression network analysis, a shared unique gene module mediated by Lr34 and Lr67 was also identified. This large transcriptome dataset also allowed the development of a rust-wheat interactome atlas for rust functional genomics research in wheat.

Heat stress mediated changes in morpho-physiological and quality parameters of wheat

BGRI 2018 Poster Abstract
Mehvish Makhdoom Wheat Research Institute, Ayub Agricultural Research Institute,Faisalabad,Pakistan
Javed Ahmad, Ghulam Mehboob Subhani, Makhdoom Hussain

Crops vary greatly in their tolerance to heat stress. Among the major staples wheat is considered the most sensitive. Wheat production is severely threatened in many countries by heat stress especially during reproductive and grain-filling stages. For recent decades due to change in global climate, the qualitative and quantitative yield of wheat is affected. To meet the demand of food requirements of ever increasing population there is a need to develop varieties which can tolerate heat stress for which screening of germplasm is pre requisite. In the present study, 30 genotypes were used to check their response to heat stress using randomized complete block design following two different sowing dates. Analysis of variance and multivariate analysis were used for finding important traits and best genotypes in relation to heat stress. High broad sense heritability coupled with high genetic advance was measured for gluten and zeleny indicating the presence of additive gene effect for these traits. Principal component analysis showed that under heat stress conditions genotype 11, 14, 15, 20 and 30 performed well. These genotypes were also found resistant to yellow and brown rust and can be used in further breeding programs for development of heat tolerant, rust resistant genotypes.

Single/multi trait genome-wide association and SNP effect estimation revealed complex architecture of rust resistance in 2300 wheat accessions

BGRI 2018 Poster Abstract
Reem Joukhadar La Trobe University
Antony Gendall, Hans Daetwyler, Matthew Hayden

Wheat stem (Sr), leaf (Lr) and stripe (Yr) rust pathogens are among the most destructive fungal diseases threatening global wheat production. We utilized 2300 wheat accession including worldwide landraces, cultivars, breeding materials and 341 synthetic accessions backcrossed with three widely grown Australian cultivars (Annuello, Yitpi and Correll) to investigate rust resistance under wide environmental conditions. The germplasm was genotyped with 90K SNP chip, and was phenotyped for two seasons in three different environments against Sr and Lr and in four different environments against Yr. Different environments for each trait showed significant correlation with mean r values of 0.53, 0.23 and 0.66 for Lr, Sr and Yr; respectively. Single-trait genome wide association (GWAS) revealed several environment-specific QTL and multi-environmental QTL distributed on all chromosomes except 6D. Multi-trait GWAS confirmed a cluster of Yr QTL on chromosome 3B (within 8.3 cM) as well as a QTL for Sr and Lr on chromosome 3D. Linkage disequilibrium and comparative mapping showed that at least three Yr QTL exists within the 3B cluster including the durable rust resistance gene Sr2/Yr30. The same region was effective against Sr resistance but did not pass the stringent significant threshold in two environments. The 3D QTL was found mainly in the synthetic germplasm with Annuello background which is known to carry the Ag. elongatum 3D translocation carrying Sr24/Lr24 resistance gene. Interestingly, estimating the SNP effect using BayesR method showed that the correlation among the highest 5% QTL effects across environments were lower than that for the small effect QTL with differences in r values of 0.25 and 0.2 for Lr and Yr respectively. These results indicate the importance of small effect QTL that cannot be captured using GWAS in achieving durable rust resistance. The detected QTL in this study are useful resources for improving bread wheat resistance to rust diseases.

Yield loss due to stem rust in wheat varieties with different types of resistance

BGRI 2018 Poster Abstract
Tegwe Soko University of the Free State and Seed-Co
Vicky Coetzee, Cornelia M. Bender, Renée Prins, Zacharias A. Pretorius

Notwithstanding the re-emergence and importance of wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt), the degree of protection provided by different types of resistance has not been carefully investigated in contemporary studies. Seven wheat entries were exposed to stem rust infection and fungicide response in a split-plot field experiment over two seasons. Severe epidemics of Pgt race PTKST, generated by frequent inoculation of spreader rows within and around the trial, developed in both years. By comparing grain yield in rusted and fungicide sprayed plots, varieties SC Nduna (Sr31) and SC Stallion (Sr2+Sr31) sustained mean yield losses of 28.8% and 20.7%, respectively. From entries with adult plant resistance (APR), Kingbird recorded a loss of 10.1% as compared to W1406 (19.5%) and W6979 (15.4%). Grain yield of SC Sky which exhibits all stage resistance (ASR) was reduced by 6.4% over the two seasons. The highest yield loss (47.9%) was measured for Line 37, the susceptible control. A significant linear relationship occurred between percentage yield loss and AUDPC in both seasons (R2=0.99 and 0.83). This study showed that not all sources of APR to stem rust provided the same level of protection under severe disease pressure. In the absence of virulence for SC Sky, ASR conferred the most protection.

Genetic variability and association mapping of anther extrusion in spring bread wheat

BGRI 2018 Poster Abstract
Samira El Hanafi International Center for Agricultrural Research in Dry Areas
Wuletaw,Tadesse, Najib, Bendaou

Hybrid wheat is a promising technology to increase yields worldwide. High seed production costs and low heterosis are the main constraints for the development of hybrid wheats. Maximizing heterosis, and selection and utilization of appropriate morphological, floral and flowering traits to optimize outcrossing are important for hybrid seed production. For an efficient hybrid wheat seed production, high anther extrusion is required to promote cross fertilization and to ensure a high level of pollen availability. A pool of 200 elite spring bread wheat male parental lines was visually assessed for anther extrusion in the plastic-house and field environments. Genome-wide association studies (GWAS) for anther extrusion was carried out using a total of 12725 SNP markers. A wide genotypic variance was observed. Several significant (|log10(P)| > 3.0) marker trait associations (MTAs) were detected. Both genotypes and environment influenced the magnitude of the anther of extrusion. The consistently significant markers could be helpful to introduce anther extrusion trait in high yielding varieties and consequently improve hybrid-seed production in wheat.

Deciphering the molecular factors essential for Lr34-mediated resistance in wheat

BGRI 2018 Poster Abstract
Dharmendra Singh University of Queensland, St. Lucia
Adnan Riaz, Jonathan Powell, Timothy Fitzgerald, Kemal Kazan, Neena Mitter, Evans Lagudah, Lee T. Hickey

The Lr34/Yr18/Sr57/Pm38/Ltn1 multi-resistance locus has been deployed and remained effective in wheat cultivars for more than 100 years. The durability and pleiotropic nature makes Lr34 a unique and highly valuable resource for rust resistance breeding. Despite its functional annotation as an ABC transporter, the mode of action is unknown. Considering this, we aimed to decipher molecular factors and signaling components essential for Lr34 function using RNA-seq of Chara resistant (Lr34) and Chara mutant (heavy ion irradiation, HII) susceptible wheat lines. Screening of Chara and Chara HII lines with Lr34-specific markers confirmed the integrity of Lr34 in both lines; however, phenotyping confirmed rust and powdery mildew susceptibility in the Chara HII lines. Plants were grown under controlled conditions and infected with Puccinia triticina pathotype 76-1,3,5,7,9,10,12,13+Lr37 at the flag leaf stage. Flag leaves were sampled at 0, 24, 48, 72, 96 and 168 hours post inoculation (hpi) from mock and infected plants. Based on real-time PCR analysis of basal defense genes and the Lr34 gene, we selected 72 hpi for RNA-seq with four biological replicates per condition. The samples were sequenced on an Illumina Hiseq 4000 at the Beijing Genomics Institute, China. A total of 9.0 Gb of sequence (2.25 Gb/library) from 16 libraries for four conditions was obtained. Differential expression analysis was performed using the Tuxedo analysis pipeline with standard parameters. Analysis revealed deletion of DNA fragments with collinear gene order on chromosomes 1A, 2D, 5A, 5B, 5D and 7D of Chara HII mutants. To determine the significance of the deletions we performed bulk segregant analyses on segregating F2 populations of Chara ? Chara HII crosses. Analyses revealed key genomic regions associated with Lr34-functional resistance and we are in the process of validating candidate genes using qPCR.

Impact of extension activities on the adoption of new wheat varieties

BGRI 2018 Poster Abstract
Joel Ransom North Dakota State University
Andrew Friskop

The rapid adoption of new varieties of wheat with disease resistance is critical to mitigating losses due to new diseases or disease races, even when only part of an integrated disease management program may include fungicides. There are numerous sources of information that can be used by farmers in North Dakota when selecting varieties with specific disease resistance as well as other traits. Formal surveys were conducted to determine the role of extension activities on the adoption of Fusarium Head Blight (FHB) control practices especially on the use of new varieties with FHB resistance. This disease became a regular and devastating problem of small grains in eastern North Dakotas in the 1990s. In a survey specific to North Dakota conducted in 2010, most respondents indicated that information from the extension service was their main source of information for FHB control with varietal selection their primary means of control. Extension publications, accessed through the internet or as hard copy obtained from an extension office or at an extension meeting were the most important sources; fewer respondents obtain their information from extension meetings and field days. A survey conducted in 2014 found that private sources (consultants and input suppliers) are becoming more important sources of information for FHB control and varietal selection, perhaps because the disease has become better understood and most new varieties have some level of FHB resistance. In durum wheat, where there are few varieties available from the private sector, extension publications were found to be the main source of information used for selecting new varieties. Data from these surveys show the importance of a strong and active extension program in ensuring that new varieties with resistance to new diseases/disease races are readily adopted.

Identification of resistance wheat cultivars using molecular marker against yellow rust in Azerbaijan

BGRI 2018 Poster Abstract
Konul Aslanova Research Institute of Crop Husbandry, Azerbaijan

A study was conducted between 2014 and 2016 aiming at determining resistance genotypes of 51 local wheat cultivars in Azerbaijan. The cultivars were evaluated in five different agro-ecological zone including Absheron and Tar-Tar (Irrigated area), Qobustan (dry semi subtropical area),Sheki (rain fed area), and Jalilabad (dry area) against three of the rust pathogens under natural conditions with four repetitions at each region. Field responses under natural infection were recorded according to Modified Cobb’s scale for major field responses (Restance (R), Moderelt Resistance MR), Moderet Sesusptable (MS), and Sussciptabe (S) and diseases severity (0-100%). For molecular analysis, genomic DNA was extracted from leaves and the following six markers (Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, and Yr26) were used to identify resistance genes at Plant Genomics College of Agronomy Northwest A&F University China. Marker analysis revealed that Yr5 was present at least in 12 cultivars including Murov, Murov-2, Shafag, Shafaq-2, Nurlu-99,Fatima, Azamatli-95,Agali, Gunashli, Saba Giymatli 2/17, P?rzivan-1, Tale-38. In addition, Yr9 was present in seven culitivars (Pirshahin-1, Layagatli-80, Shafag-2, Zirva-85,Fatima, Agali, Gunashli). Yr10 was present in eight cultivars (Yegana, Garagilchig-2, Yagut, Pirshahin, Shirvan-5, Barakatli-95, Bayaz, Girmizi bugda). And Yr18 was present in Mirbashir-128, Azamatli-95, Gunashli, Akinchi-84, Shirvan-3 cultivars. Yr26 worked well but was not found in any of cultivars. Yr17,Yr15 did not work very well with this method.

Barberry plays a role in spreading inoculums to wheat fields to cause stripe rust in China

BGRI 2018 Poster Abstract
Jie Zhao College of Plant Protection, Northwest A&F University, China
Yuanyuan Zhao, Shuxia Zuo, Dan Zheng, Lili Huang, Zhengshen Kang

Wheat stripe rust, caused by basidiomycete fungus Puccinia striiformis f. sp. tritici (Pst), is a damaging disease worldwide. The recent discovery demonstrated the fungus depends on living wheat and aecial hosts, mainly barberry (Berberis) species, to complete its life cycle. In China, we determined that, under natural conditions, the sexual cycle of Pst occurs based on collections of Pst isolates from the diseased barberry in the past three years. However, no direct evidence to support whether barberry plays a role in spreading inoculums to wheat field to cause stripe rust was detected. In the present study, we recovered 103 Pst samples from natural-infected B. shensiana in the western Shaanxi in spring 2016, and also collected 107 Pst isolates from neighboring wheat fields. Phenotype and genotype of the two Pst populations were tested using a set of Chinese differential hosts for Pst and SSR markers, respectively. The phenotype tests showed that 57 race types produced from the barberry-derived Pst populations, consisting of 58 known races, such as CYR 34, CYR32, G22-14, and Su11-14-3, and 45 new races. Many of the two Pst populations shared the same race types. The genotype tests indicated the barberry-derived Pst population produced a rich genotype, obviously higher than the wheat-derived Pst populations. The seven same genotypes were found on 40 isolates of the former and 26 of the latter. Our results provide evidence to support that sexual cycle of Pst occurs regularly in nature in China and that barberry provides inoculums to neighboring wheat fields, triggering stripe rust infections in the spring. This could be a reason why the Chinese Pst populations represent extreme genetic diversity.

Pathogenic variation of Puccinia graminis f.sp. tritici in Iran during the 2016-2017 season

BGRI 2018 Poster Abstract
Ali Malihipour Seed & Plant Improvement Institute (SPII), AREEO, Karaj, Iran
Ramin Roohparvar, Safarali Safavi, Gholamhossein Ahmadi

In recent years, wheat stem rust, caused by Puccinia graminis f.sp. tritici, has been reconsidered in Iran due to its prevalence and the emergence of the dangerous Ug99 race. This study was conducted to understand pathogenic variation in the population of P. graminis f.sp. tritici, detection of effective genes, and identification of resistance in Iranian commercial wheat cultivars or advanced lines, by planting stem rust trap nurseries under natural disease infection in several regions of Iran during the 2016-2017 cropping season. The trap nursery in each location included 48 wheat lines each carrying a single gene of stem rust (Sr) resistance, seven lines each carrying Sr multigenes, eight additional lines to confirm four Sr genes, 149 commercial wheat cultivars or advanced lines from Iran, plus several susceptible checks. The percentage leaf area affected (disease severity) and infection type were recorded at adult plant stage when disease was well developed on flag leaves of susceptible checks. Results showed presence of virulence for several Sr genes in one or more locations. However, the single genes of Sr13, Sr23, Sr24, and two complex genes of Sr7a+Sr6+Sr12 and Sr6+Sr24+Sr36+Sr1RS-Am were still effective against stem rust in all locations. The results of evaluations of commercial wheat cultivars or advanced lines showed that approximately 16% the genotypes tested including wheat cultivars Gonbad, Shiroudi, Chamran-2, Baharan, Dena, Karkheh, and Arya were resistant in all locations.

Breeding for climate smart bread wheat varieties

BGRI 2018 Poster Abstract
Amna Kanwal Wheat Research Institute, Ayub Agricultural Research Institute,Faisalabad,Pakistan
Mehvish,Makhdoom, Javed, Ahmad, Makhdoom, Hussain, Iqra, Ghafoor

Wheat crop is facing immense losses each year owing to climate change, eventually being major threat to global food security. So, the objective of the present study was to screening of advance lines under drought and heat stress conditions. In following study, 30 advance lines of wheat along with four checks(Faislabad-08, Millat-11, Galaxy-13 and ujala16) with three treatments (heat, drought, normal) were tested for different morphological (days to heading, plant height, days to maturity, biomass,1000 grain weight and grain yield) and physiological (canopy temperature at vegetative & reproductive stage, NDVI vegetative & reproductive), parameters. Biplot analysis depicted that V2, V3, V8, V14, V19, V25, and V30 showed the highest OP vector for grain yield in drought environment. Whereas, under heat conditions, V3, V4, V5, V10, V11, and V12 displayed their maximum longest vector for grain yield. Correlation analysis depicted that grain yield had non-significant correlation with canopy temperature (vegetative stage), normalized difference vegetation index (vegetative stage) canopy temperature (reproductive stage), plant height, days to heading and days to maturity under heat stress environment, while it had significant association with biomass and thousand grain weight. Under drought environment, grain yield had positive and significant correlation with biomass while on the other hand it had negative but significant association with normalized difference vegetation index (reproductive stage) and canopy temperature (reproductive stage). Best performing lines could be efficiently exploited in research programs to evade the perilous impact of climate change.

Expansion of genetic diversity for winter wheat and selection of new sources of resistance to leaf and stripe rust in South-East

BGRI 2018 Poster Abstract
Gulnura Suleimanova Kazakh National Agrarian University
Yerlan Dutbayev, Alexei Morgounov

Kazakhstan is among the ten largest grain exporters in the world. Winter wheat in Kazakhstan is mainly cultivated in the southern and south-eastern regions on an area of 1.5-2 million hectares, including 140-170 thousand hectares – in irrigated lands. Annual losses of wheat yield from diseases can reach up to 30-40% or more. For Kazakhstan, the most dangerous diseases of winter wheat are stripe rust and leaf rust. Work is under way in Kazakhstan to find new donors for resistance to leaf rust and stripe rust and the use of these donors in breeding. The aim of this research was to expand genetic diversity through crosses and development of lines obtained by the method of remote hybridization, as well as selection of new sources of resistance of bread wheat to leaf rust and stripe rust in southeast Kazakhstan. The subject of the research were 49 hexaploidsynthtic lines of Kyoto University (Japan) and CIMMYT and commercial varieties of winter wheat in the Almaty region. We screened synthetic hexaploid wheat for resistance to diseases. A collection of hexaploid synthetic wheat lines resistant to the diseases and adapted to various conditions of the Almaty region has been established. The character of inheritance of resistance to diseases in crosses of synthetic wheat with local cultivars based on comparison of the first generation and parents was studied. Evaluation of phenotypes inheritance of resistance in hybrids in the generation of F2, showed that 9crosses of synthetic wheat(LANGDON/IG 48042//ZHETISU, LANGDON/IG 48042//FARABI, LANGDON/KU-20-8//AJARLY, LANGDON/KU-2075//AJARLY, LANGDON/KU-2097// ZHETISU, LANGDON/KU-2075//FARABI, LANGDON/KU-2100//STEKLOV, LANGDON/KU-2144//NAZ, LANGDON/KU-2076//NAZ)possess the dominant resistance genes to leaf rust.Seven lines(LANGDON/ KU-2075/AJARLY, LANGDON/KU-2075/FARABI, LANGDON/KU-2092/FARABI, LANGDON/KU-2100/NAZ, LANGDON/KU-2097/STEKLOVINDAYA, LANGDON/KU-2097/ZHETISU, LANGDON/KU-2097/ AJARLY) possess from one to several dominant resistance genes to stripe rust.

Molecular dissection of below and above ground adaptation traits for abiotic tolerance of durum wheat

BGRI 2018 Poster Abstract
Khaoula El Hassouni Mohamed 5th University / ICARDA
Samir Alahmad, Ayed Al-Abdallat, Lee Hickey, Abdelkarim Filali-Maltouf, Bouchra Belkadi, Filippo Maria Bassi

Durum wheat (Triticum durum Desf.) is a major cereal crop grown globally. The terminal reduced moisture and heat occurring at the flowering phase are among the main constraints to its production. The molecular basis of tolerance to these threats remains mostly unknown. A subset of 100 genotypes derived from a collection of 384 accessions originating from different countries were investigated for their root growth and architecture under water-limited and well-watered treatments. Two protocols were used, “clear pot” for seminal root angle and “pasta strainer” for mature root angle evaluation. This study reveals that root architecture did not change depending on water treatment. A genotypic variation in root angle was found and two categories of root types were identified: genotypes with (i) superficial and (ii) deep rooting systems. In order to investigate the impact of each root type on yield, all genotypes were tested in the field at multiple locations and under different water regimes. The same set was also tested for heat tolerance in the field under rainfed conditions. Heat was imposed by placing a polytunnel at flowering time to raise the temperature of 10 degrees. The yield, thousand kernel weight and grain number per spike, were evaluated and compared to assess grain fertility, considered as a key trait of heat tolerance. The complete set was genotyped and a genome scan using 8173 SNPs markers developed by 35K Axiom array allowed to identify the genomic regions influencing drought and heat adaptation mechanisms. The pyramiding of this genomic regions could lead to an improved resilience to climate change and increase durum wheat productivity.

Mitigating temperature stress by timely planting of wheat

BGRI 2018 Poster Abstract
Ghulam Mahboob Subhani Wheat Research Institute, Faisalabad, Pakistan
Javed Ahmad, Abid Mahmood

Wheat is an important cereal crop and staple food in Pakistan. Most of the wheat is cultivated late after cotton, rice and sugarcane. Introduction of long duration Bt cotton varieties further pushed its sowing to late December or even early January. Late sowing of wheat crop results in yield loss in the Punjab province. A study has been conducted in experimental fields of Wheat Research Institute, AARI, Faisalabad, Pakistan to find out the possible reasons of low grain yields in late sown crop. Twelve experimental wheat lines were planted on seven sowing dates starting from 1st November to 30th December with ten days interval. The experimental design was a factorial combination of seven sowing dates as main plots and twelve varieties/ genotypes as subplots in a split-plot design with three replications. Effect of temperature on several crop growth stages was studied. Mean minimum temperature during the month of December, 2016 and January, 2017 remained below 5?C and mean maximum was more than 30?C during March 2017. Weather conditions experienced by the crop at each developmental stage were compared with the optimum conditions required on that specific stage in each sowing date. It was revealed that in late sown crop, different phonological/growth stages of the crop and yield components and grain yield were affected negatively. It was concluded from the study that the late sown crop suffered from two types of temperature stresses. The late sown crop faced low temperature stress at starting phase which result in delayed germination and low tillering. At caryopsis formation and grain filling the same crop face high temperature stress causing reduced grain formation and shriveled grains due to enforced maturity. Sowing of wheat at proper time i.e., by the end of November was recommended to fetch maximum yields.

Preliminary investigations on the genetic relationship of adult plant resistance to wheat rusts in COPIO

BGRI 2018 Poster Abstract
Yahya Rauf University of Minnesota
Caixia Lan, Ravi Singh, Matthew Rouse, Muhammad Imtiaz, James Anderson

The rapid appearance of new races of rust pathogens with virulence for the major seedling resistance genes in wheat has intensified the focus to discover adult plant resistance (APR) genes in wheat and utilize them in breeding programs for sustainable wheat production. The experimental breeding line ‘Copio’ developed by the International Maize and Wheat Improvement Centre (CIMMYT) in Mexico has exhibited high levels of APR to all three rusts including the African stem rust Ug99 race group. To dissect the mechanism of APR in Copio it was crossed with APAV#1, which is susceptible to all three rusts and a population of 176 F4:F5 recombinant inbred lines (RILs) was developed at CIMMYT. Both parental lines were found to be susceptible (IT >3) at the seedling stage to races TTKSK and TKTTF, which ensures the field data from Africa will be applicable for APR mapping. Seedling tests were also conducted on the RIL population using the predominant Pakistani race RRTTF, and Chi-squared tests indicated segregation of two stem rust seedling genes (?2 test P value of 0.00002). Both parents were also tested for the known APR genes Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, Lr67/Yr46/Sr55 and Sr2/Yr30 using molecular markers and results indicate that APAV#1 does not carry any known APR genes, while Copio might have Lr46 and Sr2. This population was tested in four field environments (US, Pakistan, Mexico, and Kenya) for leaf, stem and yellow rusts during 2015-16 and 2016-17. Disease severity distributions of all three rusts for the RILs across all environments were continuous, suggestive of quantitative and polygenic resistance.
We are using genotyping by sequencing (GBS) as a genotyping platform and anticipate having preliminary mapping results available by spring 2018.

In vitro response of durum wheat (Triticum durum Desf.) varieties under drought stress

BGRI 2018 Poster Abstract
Sourour Ayed Research Center of Agricultural and Development in Northwest Semi-arid regions of Tunisia
Afef,OTHMANI, Olfa, SLAMA-AYED, Hajer, SLIM-AMARA, Mongi, BEN YOUNES

Eleven durum wheat (Triticum durum Desf.) genotypes were screened to select for drought-tolerance under in vitro immature embryos culture. Drought stress is induced by using five PEG concentrations (0, 200, 270, 295 and 310 g/l of PEG 6000). Results showed, for all studied traits, significant differences among PEG treatments and genotypes. In fact, increasing PEG concentration decreases relative growth rate, callus water content, relative water content, in vitro tolerance and relative tolerance. Biplot analysis indicated that the first two PCs (principal components 1 and 2) explain 70.5 % and showed that Karim, Mahmoudi and Om Rabiaa are respectively the most drought tolerant varieties tested, however, Ben Bechir, Maghrbi and Nasr were the most sensitive.

Development of high yielding and disease resistant wheat cultivars by Cereal Crops Research Institute Pirsabak Nowshera after de

BGRI 2018 Poster Abstract
Gulzar Ahmad Cereal Crops Research Institute Pirsabak Nowshera, Pakistan
Khilwat Afridi, Muhammad Ishaq, Irfan Shah, Ibne Khalil, Masood Jan

The Cereal Crops Research Institute (CCRI) is situated on the left bank of River Kabul, near village Pirsabak, 3 km east of Nowshera at an elevation of 288 m above sea level on the intersection of 74? E longitude and 32? N latitude. In July 2010, a devastating flood destroyed all the available germplasm, machineries, laboratories, and field equipment. After the flood research activities were restarted with full motivation, dedication and hard work in collaboration with PARC, ICARDA, CIMMYT, and with the help of wheat productivity enhancement program (WPEP). Developed new population of wheat via spring x spring, spring x facultative germplasm to elevate genetic diversity and lines selected from segregating populations for high yield and rust resistance are at advanced stage of testing.

Since the flood, the CCRI developed four new wheat cultivars: Pirsabak-2013 Pakhtunkhwa-2015 for irrigated areas and Shahkar-2013 and Pirsabak-2015 for rainfed areas of Khyber Pakhtunkhwa, Pakistan. Varietal maintenance and seed production of the released varieties has been undertaken by the wheat breeding team effectively. The seed of these newly developed wheat cultivars was multiplied on fast track basis through pre-released seed multiplication and now these four varieties are the most popular cultivars of Khyber Pakhtunkhwa, Pakistan. Three new candidate wheat lines (PR-106, PR-110 and PR-112) have been submitted to provincial seed council for approval as new wheat cultivars for Khyber Pakhtunkhwa, Pakistan. Two new candidate lines i.e. PR-115 and PR-118 got first position in National Uniform Wheat Yield Trials (NUWYT) on the basis of grain yield during 2016-17 under irrigated and rainfed conditions, respectively.

Virulence of Puccinia triticina races collected on durum wheat in Spain during 2009-2015

BGRI 2018 Poster Abstract
Fernando Martinez-Moreno University of Seville
Solis,Ignacio

Leaf rust is an important worldwide disease on wheat caused by the fungus Puccinia triticina. Great infections on durum wheat occurred in Southern Spain in the 2000s but diminished in recent years due to deployment of resistant varieties and application of fungicides by farmers. A leaf rust survey was carried out from the 2009-15 period to monitor the virulence spectrum of the prevailing pathotypes. A total of 84 leaf rust isolates were collected on durum wheat fields. From those, single culture were obtained and used to inoculate a set of 27 differential isolines of the susceptible variety Thatcher. In addition 8 durum varieties with known Lr genes were also included.
The main highlight is that the resistance conferred by the popular Lr14a gene was broke up in 2013, but since then virulence to this gene is not widespread. In total, 23% of the isolates were virulent to the lines containing Lr14a. Lr1, Lr3, Lr3bg, Lr16, Lr24, Lr26, and Lr28 are very effective. Lines carrying Lr2c, Lr10, Lr14b, Lr20, Lr23, and LrB displayed susceptibility to most isolates. The durum varieties Jupare (Lr27+Lr31), Guayacan (Lr61), Storlom (Lr3+) and Camayo (LrCam) are also resistant against all isolates tested. Diversification of Lr genes is needed in the coming varieties to delay the appearance of new virulent races.

Evaluation of naked barley landraces from mountainous region of Nepal for yellow rust resistance.

BGRI 2018 Poster Abstract
Ajaya Karkee Nepal Agricultural Research Council, National Agriculture Genetic Resources Centre, Khumaltar, Lalitpur
Baidhya Nath,Mahto, Mina Nath, Paudel, Dhruba Bahadur, Thapa, Krishnahari, Ghimire, Bal Krishna, Joshi, Suraj, Baidya, Prem Bahadur, Magar

Naked barley (Hordeum vulgare var. nudum L.), is an important winter crop grown in the mountain region of Nepal. Stripe rust (Puccinia striiformis f.sp. hordei), is the most destructive fungal disease of barley in the hills of Nepal with losses up to 100 %, occurring in cooler regions with higher altitude (1000-2500 m). Yield components along with final rust severity (FRS), area under disease progress curve (AUDPC) and average coefficient of infection (ACI) were evaluated for 20 indigenous barley accessions collected from mountainous region of Nepal at National Agriculture Genetic Resource Centre (Genebank), Khumaltar, Nepal during winter season of 2016-2017 with three replications. Barley cultivars displayed a range of severity from 0% to 100% with immune to susceptible reaction. AUDPC values were significantly different among the tested genotypes. Barley genotypes with accession number NGRC00837 (ACI-3), NGRC02357 (ACI-7), NGRC06026 (ACI-9) and NGRC02306 (ACI-12) were found resistant with lowest diseases progress while NGRC02350 (ACI-60), NGRC06036 (ACI-80), NGRC02312 (ACI-86), NGRC04003 (ACI-83) and NGRC02318 (ACI-93) were found as highly susceptible landraces. Correlation coefficients of agronomical parameters such as grains per spike and 1000-kernels weight with epidemiological parameters such as AUDPC and ACI were found highly significant. Resistant genotypes with low values for disease progress as well as diseases reaction were identified. The results indicate that source of resistance to yellow rust in naked barley genotypes are available in Nepal and can be used for resistant breeding in future.

Genetic analysis and location of resistance genes to wheat stripe rust in Chinese landrace Sifangmai

BGRI 2018 Poster Abstract
Jianlu Sun Institute of Plant Protection, Chinese Academy of Agricultural Sciences
Jing Feng, Ruiming Lin, Fengtao Wang, Qiang Yao, Qingyun Guo, Shichang Xu

Wheat stripe rust is an important air borne disease caused by Puccinia striiformis f. sp. tritici, and seriously threatens the safety of wheat production. Breeding and utilization of resistant varieties is the most economical, safe and effective measure to control wheat stripe rust. Sifangmai is a landrace from the state of Guangxi, China, and maintains good resistance to the current epidemic species CYR34, CYR33, CYR32 and CYR29 in China. Sifangmai was crossed with Taichung 29 to obtain F1, F2 and F2:3 to analyze its character of inheritance. In the adult stage, the cross of Sifangmai /Taichung 29 was inoculated by CYR32. The genetic analysis showed that the resistance of Sifangmai to CYR32 was controlled by a dominant gene, named as YrSF. A mapping population of F2 was genotyped with simple sequence repeat (SSR) markers. SSR loci Xgpw8015, Xgpw4098, Xwmc73, Xgpw8092, Xgpw7309 and Xbarc89 on 5B chromosome showed polymorphic between Taichung 29, Sifangmai, and resistant and susceptible pools, indicating that the resistant gene in Sifangmai was located on the 5B chromosome. The linkage map of these SSR markers was constructed and the nearest SSR to the gene is Xgpw8015. A set of Chinese Spring nulli-tetrasomic lines was used to confirm YrSF on chromosome 5B. YrSF is different from known genes in chromosome 5B. Xgpw8015 can be used as a marker for detection of YrSF.

New virulence of some Puccinia triticina races to the effective wheat leaf rust resistant genes Lr 9 and Lr 19 under Egyptian field conditions

BGRI 2018 Poster Abstract
Walid El-Orabey Plant Pathology Research Institute

Leaf rust resistance genes Lr9 and Lr19 were previously highly effective against the most predominant races of Puccinia triticina in Egypt. In 2015/2016 growing season, susceptible field reaction was recorded on these two genes where rust severity reached about 40S for Lr9 and 5S for Lr19 under Egyptian field conditions at four locations i.e. El-Behira, El-Minufiya, El-Qalubiya and El-Fayom governorates. Eight leaf rust field samples were collected from these governorates (four from each of Lr9 and Lr19). Forty single isolates were derived from the collected samples of Lr9 and Lr19 (each with 20 isolates). Eight pathotypes were identified from Lr9 and only two pathotypes were identified from Lr19. The most frequent pathotypes virulent to Lr9 were KTSPT (30%) followed by TTTMS (25%). Moreover, the other pathotypes ranged from 5 to 10%. Whereas, the most frequent pathotype virulent to Lr19 was CTTTT (85%) and the lowest PKTST was 15%. Pathotypes i.e. PRSTT, NTKTS and TTTMS identified from Lr9 were more aggressive on most of the tested leaf rust monogenic lines, as they were virulent to 36, 35 and 35 lines, respectively from a total of 39 lines. The two pathotypes; PKTST and CTTTT identified from Lr19 were virulent to 36 and 35 lines, respectively. Moreover, leaf rust pathotypes i.e. NPTNK and PRSTT from Lr9 and PKTST from Lr19 were the most aggressive on the tested wheat cultivars at seedling stage. The Lr2a was the most effective leaf rust resistance genes against the tested pathotypes at adult plant stage. Wheat cultivars Misr 1, Misr 2 and Nubariya 1 were the most resistant cultivars against the tested pathotypes at adult plant stage.

Genome-Wide Association Study (GWAS) of resistance to stem and stripe (yellow) rust in Iranian wheat cultivars and elite lines

BGRI 2018 Poster Abstract
Muhammad Massub Tehseen Department of Field Crops, Ege University, Izmir, Turkey
Kumarse Nazari, Mehran Patpour, Davinder Singh, Aladdin Hamwieh

Rust diseases in wheat are the major threat to wheat production and yield gains. The breakdown in resistance of certain major genes and new emerging aggressive races of rusts are causing serious concerns in all main wheat growing areas of the world. Therefore, it is the need of the hour to search for new sources of resistance genes or QTL’s for effective utilization in future breeding programs. In total 100 wheat genotypes were evaluated for seedling and adult-plant resistance to stem rust races TKTTF and TTKSK at Tel Hadya-Syria, and Njoro-Kenya, and Kelardasht-Iran. Evaluation to Yr27 virulent stripe rust race was carried out at Tel Hadya and Terbol-Lebanon research stations. In this study we used genome wide association studies (GWAS) to identify markers or QTLs linked to stem rust and stripe rust races using Diversity Arrays Technology (DArT?) in selected 35 Iranian wheat genotypes. The association of markers and phenotypes was carried out using a unified mixed-model approach (MLM) as implemented in the genome association and prediction integrated tool (GAPIT). Out of 3,072 markers, 986 were polymorphic and used for marker trait associations. A total of 44 DArT markers were identified to be significantly (p<=0.01) associated with studied traits in 16 genomic regions 1A, 1B, 2A, 4A, 6A, 7A, 1B.1R, 2B, 3B, 4B, 5B, 5B.7B, 6B, 7D and an unknown region. Among associated markers, 34 were linked to stem and nine to stripe rust. They were found on 16 genomic regions on chromosome arms 1A, 1B, 2A, 4A, 6A, 7A, 1B.1R, 2B, 3B, 4B, 5B, 5B.7B, 6B, 7D and an unknown region. Associated markers explained phenotypic variation ranging from 21 to 65%. In addition to validation of previously identified genes, this study revealed new QTL’s linked to stem and stripe rust which will assist breeders to develop new resistant varieties.

Yellow rust disease status and pathogen population structure in Northwestern region of Pakistan

BGRI 2018 Poster Abstract
Zia Rehman The University of Agriculture, Peshawar, Pakistan
Muhammad Khan, Muhammad Imtiaz, Zahoor Swati, Annemarie Justesen, Sajid Ali

Yellow rust caused by Puccinia striiformis is an important disease in Pakistan. The population structure of P. striiformis in the North Eastern Himalayan region of Pakistan have been shown to be genotypically diverse with potential role of sexual recombination (Ali et al., 2014b), while lesser diversity in the Southern districts of Khyber Pakhtunkhwa (KP)(Khan et al., 2015). This study was designed for the first time to assess disease status and analyze population structure of P. striiformis across three distant parts of Northwestern Pakistan i.e., Bajaur in North Western Agency and Swat and Buner in Malakand Agency, and was compared with other Pakistani populations. Depending on the intensity of infections caused by the pathogen in the tested varieties and breeding lines, the severity of the disease ranged from 5% to 100% during 2015. Yellow rust severity was the maximum on Morocco (100%), Gomal (100%) and KPWYT-18 (80%) and moderate on Ghanimat-e-IBGE (10%) and PS-2008, PS-2013, Tatara and Millat with 20% severity. A total of 81 single lesion samples collected on infected varieties were genotyped with 18 microsatellite markers. From these, 63 distinct multilocus genotypes (MLGs) were detected; 15 single lesion samples collected from Buner produced 15 distinct MLGs signifying very high diversity. A high genotypic diversity with clear signature of recombination was detected across all the three locations. Buner (100%) had the maximum diversity followed by Swat (97%) and Bajaur (91%). The observed diversity was almost equal to other Northeastern Himalayan populations of Pakistan, while it was high when compared to some southern populations of KP (genotypic diversity of 0.895) and other worldwide clonal populations (Ali et al., 2014a). The high diversity and recombinant population structure suggested potential role of sexual reproduction in these areas, which needs to be further explored to establish the origin of diverse virulence pattern in Pakistan.

Screening of wheat germplasm lines for identification of sources for yellow rust resistance in Kashmir valley

BGRI 2018 Poster Abstract
Mohd Anwar Khan Sher-e-kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and kashmir, India
Reyazul Rouf Mir, Shazia Mukhtar, Rahul R., Nelwadker, M., Ashraf Bhat

In India stripe rust of wheat (Triticum aestivum L.) is important as it occurs in the severe form in North Hill Zone (NHZ) covering states of Jammu and Kashmir, Himachal Pradesh and Uttarakhand. Stripe rust thrives well under cool and moist field conditions and sometimes its epidemic is so severe that it destroys the whole crop. Although the fungicides have been applied to control this disease but their use is unfriendly to the environment and they add to the input cost of farmers. The breeding for disease resistance is an effective strategy and involves identification of stable sources of resistance and their utilization. Deployment of yellow resistance genes has helped in suppressing the intensity, effectiveness and frequency of rust epiphytotics. Many sources of yellow rust resistance exist, but these are either incompletely characterized or these have not been studied in sufficient detail needed for their designation. The present study was conducted to screen for yellow rust resistance a set of 300 wheat germplasm lines received from various national and international germplasm centers viz., CIMMYT, Mexico; CIMMYT, Ankara, Turkey; IARI sub-station, Wellington, Tamil Nadu; IIWBR, Karnal; IIWBR, Flowerdale, Shimla and SKUAST-Kashmir, Srinagar for yellow rust resistance (46S119 and 78S84 as most prevalent races) over years 2012 to 2016 under field and ployhouse conditions. The study could identify eleven wheat lines showing varying levels of resistance to yellow rust races 46S119 and 78S84 when scored at adult plant stage under both conditions. The area under disease progress curve (AUDPC) scores of the lines identified as resistant was lowest as compared to yellow rust susceptible check (Agra Local). The resistant lines identified in the study could efficiently be utilized in yellow rust breeding programmes of the country and thereby deployment of such genes over space and time for an effective and long lasting control.

Evolution of durum wheat from Moroccan landraces to improved varieties

BGRI 2018 Poster Abstract
Mona Taghouti INRA
Fatima Gaboun, Nasserlhaq Nsarellah, Keltoum Rhrib, Atmane Rochdi

Durum wheat landraces have constituted the main source of Moroccan wheat production until the first half of the last century. This local germplasm is still cultivated in less favorable environments particularly in mountains and sub-Saharan regions. In recent decades of the late 20th and early 21th centuries, the genetic improvement had led to the release of new durum wheat cultivars highly uniform and more productive. The present paper investigates the evolution of genetic variability in terms of productivity and quality related traits using an historical series of Moroccan durum wheat genotypes grouped according to their period of release into “Landraces/ Old cultivars,” “Intermediate cultivars,” and “Modern cultivars”. A significant improvement was achieved in durum wheat Morroccan productivity. Modern cultivars exceed their predecessors in terms of productivity related traits. The genetic gain was clearly associated with a reduction in plant cycle and plant height lowering the straw yield which resulted in an increase of grain yield estimated to 15.42Kg/ha/year. However, results revealed a reduction in terms of almost all quality related traits; -0.12% per year for protein content, -0.30 % per year for gluten strength, -0.31% per year for yellow pigment content, and -0.19% per year for vitreousness. The results underline the important variability in grain quality attributes among landraces genotypes. This local germplasm may be used as sources of quality-improving attributes in durum wheat breeding program to develop new varieties combining both high productivity and grain quality.

Mapping of all-stage leaf rust resistance genes in Triticum dicoccoides derived recombinant inbred line (RIL)

BGRI 2018 Poster Abstract
Ahmed Elkot School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana-141004 India
Rohtas,Singh, Satinder, Kaur, Parveen, Chhuneja

Leaf rust caused by Puccinia triticina is one of the most historical and economically important wheat diseases. Breeding for new cultivars with effective gene combinations is the most promising approach for reducing losses due to leaf rust. Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. An accession of T. dicoccoides acc. pau4656 showed resistance against prevailing leaf rust races in India, when tested at the seedling and adult plant stage. The introgression line, developed from the cross of the leaf rust resistant T. dicoccoides acc. pau4656 and the susceptible T. durum cultivar Bijaga yellow, was crossed with T. durum cultivar PBW114 to generate recombinant inbred lines (RIL) for mapping leaf rust resistance gene(s). RIL population was screened against highly virulent leaf rust race 77-5 at seedling stage and inheritance analyses revealed the segregation of two leaf rust resistance genes. The genes have been temporarily designated as LrD1 and LrD2. A set of 387 SSR marker was used for bulked segregant analysis (BSA). The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on whole of the population. Single marker analysis using MapDisto software placed LrD1 on the long arm of chromosome 6A linked to the SSR marker Xwmc256 and LrD2 on long arm of chromosome 2A close to the SSR marker Xwmc632. T. durum cv. PBW114 used in the present study was also resistant to leaf rust at the seedling stage. So one of these leaf rust resistance genes might have been contributed by the PBW114 and other by T. dicoccoides. The current study identified valuable leaf rust resistance genes for deployment in wheat breeding programme.

Registration of 'Malika': A Bread Wheat Cultivar Developed through Doubled Haploid Breeding

BGRI 2018 Poster Abstract
Sripada Udupa ICARDA
Jamal El Haddoury, Ahmed Amri

Malika’, a hard red spring wheat (Triticum aestivum L.) cultivar developed using doubled haploid technology by the Institut National de la Recherche Agronomique (INRA), Morocco, and tested as 06DHBW48, was approved for release in 2016 by the Office National de S?curit? Sanitaire des Produits Alimentaires (ONSSA), Morocco. Malika was selected from the doubled haploids derived from the cross ‘Achtar3*//’Kanz’/Ks85-8-4). Achtar and Kanz are Moroccan varieties originating from segregating populations from CIMMYT. Achtar and Kanz are a well adapted to Moroccan conditions but susceptible to the Hessian fly, yellow rusts and some races of leaf rust. ‘Achtar’ was crossed with it in order to incorporate the Hessian fly resistance, yellow rust resistance and leaf rust resistance and ‘Achtar’ was crossed with Kanz/Ks85-8-4 having resistance to Hessian fly, yellow rust and leaf rust. Backcrossed 3 times with ‘Achtar’, and selected lines having resistance to the Hessian fly, yellow rust and leaf rust from the population derived from each backcross. Finally the selected the resistant line was used develop doubled haploids. The doubled haploid lines produced were tested in the laboratory and field for Hessian fly and the rust resistance. The resistant lines were incorporated in the multi-local yield trials and three promising lines with the resistance to Hessian fly, yellow rust and leaf rust and better yield and quality were submitted for registration in the official catalog in 2014. After 2 years of testing (years 2014-15 and 2015-16), one line (06DHBW48) was accepted for the registration and designated as ‘Malika’. ‘Malika’ is a semi-dwarf variety, well adapted to semi-arid regions, early maturing, high yielding, tolerant to drought and resistant to Hessian fly, leaf rust and yellow rust.

Differences in absorption and distribution of foliarly-applied zinc in maize and wheat by using stable isotope of 70Zn and Zn-responsive fluorescent dye Zinpyr

BGRI 2018 Poster Abstract
Raheela Rehman Sabanci University
Levent Ozturk, Ismail Cakmak

Zinc (Zn) deficiency is an important health problem worldwide, affecting about two billion people, especially children and women. Zinc deficiency related diseases are more prevailing in developing countries because populationa rely on cereals (i.e., wheat, rice and maize) as a staple food which are inherently low in micronutrients. Zinc concentration in cereal grains can be improved by genetic or agronomic biofortification. Optimized applications of soil and foliar Zn fertilizers has been found effective for cereals like wheat and rice but not significantly in maize. Current study focuses to elucidate the physiological reasons behind the poor response of maize to foliar applications compared to wheat. Experiments with stable isotope of Zn (70Zn) revealed the differences in leaf uptake, root and shoot translocation of foliar-applied Zn in wheat and maize. The results suggested that wheat has greater capacity for leaf absorption and translocation of foliarly applied Zn compared to maize. The increased leaf Zn uptake and localization in wheat was confirmed by a visual demonstration using Zn-responsive fluorescent dye Zinpyr and fluoresce microscopy. This study provides valuable information to maximize the uptake and deposition of foliarly applied Zn to cereal grains.

Investigation on heat stress tolerance in bread wheat (Triticum aestivum. L) for the conditions of terminal heat stress.

BGRI 2018 Poster Abstract
Juned Bagwan Agharkar Research Institute Pune
yashavantha kumar,Kakanur, Shrikanth, Khairnar, Balgounda, Honrao, Vijendra, Baviskar, Ajit, Chavan, Vitthal, Gite, Deepak, Bankar, Sameer, Raskar, Satish chandra, Misra

Heat stress globally remains the most important factor determining yield anomalies. Terminal heat stress shortens the duration of grain filling. Hence, this investigation was undertaken during the cropping season 2016-17 to evaluate heat stress tolerance of 32 bread wheat genotypes planted in timely (optimal temperature) and late (terminal heat stress) sown condition at Agharkar Research Institute, Pune. Data were collected and analyzed for various agronomical and physiological traits and also selection indices for stress tolerance, derived from grain yield of wheat genotypes under optimal and late sowing conditions. It was observed that the genotypes DBW 187, GW 477, HD 2932, DBW 107, PBW 752 were the highest yielding under timely sown condition whereas, HD 3226, DBW 187, HP 1963, HD 3219, DBW 196 were the highest yielding under late sown condition. DBW 187 was found to withstand the stress conditions. Minimum percent yield decrease and high yield stability index (YSI) was found in HD 3219 followed by HD 3226 and DBW 196 which indicated their better performance under stress condition. Harmonic mean, a stress tolerance selection index was found to be the best fit of linear model (R2 = 0.78) and a good indicator of high yield under heat stress condition. Physiological parameters, Chlorophyll (SPAD), canopy temperature (Infra-red thermometer) and vegetation index (NDVI) have not shown significant relation with yield, however, they were found to be significantly associated with yield contributing traits like biomass, thousand grain weight, grain number per spike. DBW 187 and HP 1963 showed stable yields with high PCA 1 and low PCA 2, indicating their resilience to stress conditions. The investigation has resulted in identification of genotypes for terminal heat stress conditions and also given greater insights in understanding the importance of physiological traits and stress tolerance indices in selection process.

Incorporation of rust resistance (especially stem rust race Ug99) from rice to wheat through Wheat ? rice crossing

BGRI 2018 Poster Abstract
Javed Ahmad Wheat Research Institute, AARI, Faisalabad, Pakistan
Ghulam Mahboob Subhani, Makhdoom Hussain, Mehvish Makhdoom

Rust is the single largest factor limiting wheat production in Pakistan. According to the FAO reports, countries in the predicted immediate pathway of Ug99 grow more than 65 million hectares of wheat, accounting for about 25% of global wheat harvest.
Rice, a member of the same family (Poaceae) is not attacked by any rusts. Wheat, an allo-hexaploid is responsive for wide crossing. It has previously been successfully crossed with its several wild relatives and different other crop species like corn, pearl millet etc. Based on the above facts wheat ? wild rice crossing has been attempted to incorporate rust resistance from rice to wheat. Successful crosses were made under in-vitro conditions. Surviving plantlets developed from these crosses were assayed for any genetic material introgressed from rice. Different cytological / molecular techniques were used to detect the introgression (Squash preparations from root tips, FISH, GISH, SSR etc.). Two hundred and fifty primers specific to rice chromatin were used to look for the introgression of rice chromatin into hybrids. Seven primers amplified the fragments in hybrids indicating the possible introgression of rice chromatin in wheat x rice hybrids but in-situ hybridization didn’t confirm that introgression. So further testing of these hybrids is needed.

The RES-WHEAT project: identification of resistance genes in durum wheat for an healthier and more sustainable agriculture

BGRI 2018 Poster Abstract
Anna Maria Mastrangelo CREA-Research Centre for Cereal and Industrial Crops
Elisabetta Mazzucotelli, Oadi Matny, Antonietta Saccomanno, Raffaella Battaglia, Francesca Desiderio, Agata Gadaleta, Nicola Pecchioni, Pasquale De Vita, Giovanni Laido, Luigi Cattivelli, Brian Steffenson

The recent emergence of new widely virulent and aggressive strains of rusts (particularly stripe and stem rust) is threatening Italian durum wheat (Triticum turgidum L. var. durum) production, especially under the trend of higher temperature and humidity. A big effort has been undertaken to explore the genetic variability for resistance to these fungal pathogens and discovering novel resistance genes. In particular, a wide set of tetraploid wheat lines was genotyped with several thousands of SNP markers and used for association mapping. This large collection consisted of a group of durum wheat cultivars, produced from the beginning of the last century up to now, a collection of wild emmer wheats (T. dicoccoides), and lines belonging to other wild and domesticated tetraploid subspecies, as a large untapped source of genetic diversity. In a tight cooperation with the University of Minnesota, this collection was evaluated for reaction to several races of stem and stripe rust pathogens in both controlled greenhouse and field conditions. Among the genotypes belonging to the collection are parents of segregating populations which were used for the validation of mapping results. Novel resistance loci were identified, that can be incorporated into new durum varieties through breeding programs. The QTLs found in this study, together with those available in literature, were projected to the recently sequenced durum wheat genome in order to define more precisely the chromosome regions and candidate genes involved in resistance to rusts. Lines which were resistant to multiple races of rust pathogens were also found among both T. dicoccoides and durum wheat cultivars as a source of resistance genes, whose cloning will be undertaken based on the results here obtained.
This study was supported by the Italian Ministry of Foreign Affairs and International Cooperation, with the special grant RES-WHEAT.

Breeding for stripe rust resistance in spring wheat germplasm adapted to Khyber Pakhtunkhwa province of Pakistan

BGRI 2018 Poster Abstract
Fahim Ullah Khan Barani Agricultural Research Station, Kohat
Fida Mohammad, Muhammad Imtiaz

Stripe rust is one of the major limiting factors in wheat production. An objective-based breeding program was initiated at Barani Agricultural Research Station (BARS), Kohat in 2013/14 to transfer APR genes from CIMMYT and ICARDA spring wheat lines into wheat germplasm well adapted in Khyber Pakhtunkhwa (KPK). Nine high yielding but stripe rust susceptible KPK wheat varieties were crossed in various combination with 17 CIMMYT and ICARDA wheat lines carrying resistance genes. The resultant 79 F1s were backcrossed with respective susceptible parents followed by single plant selection in F2 generation. During 2015/16, 367 segregating populations/lines were screened in multi-environment stripe rust tests within Khyber Pakhtunkhwa. Sixty-nine out of 367 lines showing adequate resistance were again screened for strip rust resistance at hot spot and in yield trial at BARS, Kohat during 2016/17. Seventeen lines showed considerable resistance and were higher yielding than check cultivars. Lines exhibiting adequate resistance will be further tested in advanced yield trial at provincial and national level for possible release of new varieties in wheat.

Monitoring wheat diseases in Nepal 2014-2016

BGRI 2018 Poster Abstract
Suraj Baidya Plant Pathology Division, Nepal Agricultural Research Council
Baidya Nath Mahto, Durba Bahadur, Thapa Roshan, Basnet Nautan Raj, Gautam Sesh, Raman Upadhyaya

Disease surveillance is very important in establishing the status of disease response in crops. During the 2014 to 2016 wheat seasons, foliar blight (spot blotch caused by Bipolaris sorokiniana and tan spot caused by Pyrenophora tritici-repentis) was recorded as severe across the entire whole plains region. Foliar blight was moderate in the mid hills, especially the Kathmandu valley. Leaf rust was severe (10MS – 100S) at several places in the mid hills. This could be due either to climatic conditions or varieties susceptible to the prevailing pathotypes. Yellow rust was also recorded up to 100S in the Kathmandu valley. Newly released varieties Gaura and Dhaulagiri showed yellow rust incidence of 20MS to 40S. Stem rust was sporadic and light and was observed very late in the season (tR – 10MR) in far western districts and the Kathmandu valley. Powdery mildew was moderate and localized. Loose smut was found at low levels throughout the mid hills. In 2014, Karnal bunt (caused by Tilletia indica) was also recorded in far western regions. Five different pathotypes of P. triticina (121R63-1, 21R55, 21R63 and 0R9) and one Pst pathotype (110S119) have prevailed during the last few years. Wheat genotypes were evaluated at Khumaltar and those reputed to have Yr27, Yr27+, Yr27+Yr18, Yr31+APR, Yr9, Yr10 and Yr15 were resistant. Similarly, genotypes containing Lr34+ had lower leaf rust severities than others.

Sowing seeds of prosperity

BGRI 2018 Poster Abstract
Kanan Vijayaraghavan Sathguru Management Consultants
Venugopal Chintada, Vijay Paranjape, Mansi Naithani, Aishwarya Vardhan

Nepal is an important wheat producer country in the South Asian region; with wheat being the third most important crop in the country after paddy (rice) and maize. Additionally, high-quality, disease free, processed seed is vital to establishing food security in South Asia. The Agriculture and Forestry University or AFU, located in the fertile Chitwan region of Nepal, is the only agriculture university catering to the needs of the Terai region and has the capability to provide innovative wheat seed solutions for small wheat-growing farmers. In the Delivering Genetic Gain Project or DGGW, the AFU has an active involvement in seed production, processing, and distribution. These activities play a major role in human capacity building in the country involving women empowerment, whole family participation in varietal selection and entrepreneurship for sustainable livelihood and overall development. Currently, under the DGGW?s Innovative Seed System in Nepal, AFU produces and aggregates seeds from farmers in the area and process it through a new seed processing unit, which is a cost-efficient version of machines commonly seen in larger agricultural facilities. At full capacity, the unit can operate up to 18 hours a day and process one ton of seed per hour. The unit it is also capable of processing rice and maize during other cropping seasons. By March 2017, more than 200 farmers applied to be part of the inaugural cohort of farmers trained in producing disease free wheat seed. The inaugural wheat season for the Seed Systems for Nepal Initiative has concluded successfully, with a total of 14 metric tons of disease-free wheat seed processed. The DGGW Seeds Systems for Nepal Initiative envisions to increase the number of empowered farmers next season, which commences on November, 2017.

Unlocking new alleles for leaf rust resistance in the Vavilov wheat collection

BGRI 2018 Poster Abstract
Adnan Riaz The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI)
Naveenkumar,Athiyannan, Sambasivam, Periyannan, Olga, Afanasenko, Olga, Mitrofanova, Gregory, Platz, Elizabeth, Aitken, Rod, Snowdon, Evans, Lagudah, Lee, Hickey, Kai, Voss-Fels

Leaf rust (LR) is an important wheat disease and deployment of resistant cultivars is the most viable strategy to minimise yield losses. We evaluated a diversity panel of 295 bread wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources (VIR), St Petersburg, Russia for LR response and performed genome-wide association studies (GWAS) using 10,748 polymorphic DArT-seq markers. The diversity panel was evaluated at the seedling and adult plant growth stages using three prevalent Australian P. triticina pathotypes. GWAS applied to 11 phenotypic data sets identified a total of 52 significant marker-trait associations representing 31 quantitative trait loci (QTL). Among them, 29 QTL were associated with adult plant resistance (APR). Of the 31 QTL, 13 were considered potentially new loci, whereas 4 co-located with previously catalogued Lr genes and 14 aligned to regions reported in other GWAS and genomic prediction studies. One seedling LR resistance QTL located on chromosome 3A showed pronounced levels of linkage disequilibrium among markers (r2 = 0.7), indicative of a high allelic fixation. Subsequent haplotype analysis for this region found 7 haplotype variants, of which 2 were strongly associated with LR resistance at the seedling stage. Similarly, analysis of an APR QTL on chromosome 7B revealed 22 variants, of which 4 were associated with resistance at the adult-plant stage. Most of the lines in the diversity panel carried 10 or more combined resistance-associated marker alleles, highlighting the potential of allele stacking for long-lasting resistance.

Preliminary results on stem rust disease in a winter wheat landrace population from Central and Western Asia

BGRI 2018 Poster Abstract
Kadir Akan Ahi Evran University, Agriculture Faculty, Plant Protection Department K?rsehir/Turkey
Nilofer Akci, Marta da Silva Lopes

Stem rust (Puccinia graminis f. sp. tritici) is a fungal disease that can significantly reduce wheat yields and quality. The goal of this study was to screen 281 winter bread wheat landraces genotypes for their reaction to stem rust disease in seedling and adult plant stage.
For seedling stage, the experiment was carried out under greenhouse conditions in Field Crops Central Research Institute in Ankara, Turkey during 2017 growing season. The genotypes were grown at 20?4?C under greenhouse condition and inoculated (avirulent on Sr24, 26, 27, and 31 resistance genes) with urediniospores in mineral oil suspension at Zadoks growth stage 11 or 12. After inoculation, the genotypes were incubated at 20?1?C with 100% humidity during 24 hours then at 18-25?C. Scoring took place after 14 days using a 0-4 scale. Infection types on the susceptible checks (cv. Gun-91 and Thatcher) were 3+ scores. For adult plant reactions, the genotypes were screened under natural epidemic conditions for Pgt (virulent on Sr5, 6, 7b, 8a, 8b, 9b, 9g, 10, 30, Tmp and Mcn resistance genes) in Seydiler-Kastamonu, Turkey. The materials were sown in a one-meter row with three replications. Stem rust development on each entry was scored using the modified Cobb scale (Little Club had reached 80-100S) in August 2017. Coefficients of infections were calculated and values below 20 were considered to be resistant.
Two (1%) (Seedling stage) genotypes and 15 (5%) (Adult stage) genotypes were resistant to Pgt. The resistance genotypes identified in this study can be used in breeding programs. SNP markers will be identified for stem rusts resistance identified in the landrace population.

Genome wide association mapping of resistance to leaf rust disease in wheat

BGRI 2018 Poster Abstract
Mohamed Mergoum The University of Georgia (UGA)
Suraj Sapkota, James Buck, Jerry Johnson, John Youmans

Leaf rust disease, caused by the fungal pathogen Puccinia triticina, is a major biotic constraint of wheat production worldwide. Genetic resistance is the most effective, economic, and environmentally safe method to control and reduce losses caused by this disease. More than 70 leaf rust resistance genes have been identified and mapped to specific chromosomes; however, continuous evolution of new leaf rust races requires constant search for new sources of resistance with novel QTL/genes. The objectives of this study were to identify sources of resistance, and to map genomic loci associated with leaf rust resistance using genome wide association study (GWAS) approach. Phenotypic evaluation of 297 spring wheat genotypes against a prevalent race of leaf rust in Georgia revealed that most of the genotypes were susceptible, and only 24 genotypes were found resistant. Furthermore, GWAS detected 10 markers on chromosomes 2A, 2B, 6A, 7A, and 7B significantly associated with leaf rust resistance. A marker on chromosome 7AS was identified revealing a novel genomic region associated with leaf rust resistance. The new identified sources of resistance and QTL could be used in wheat breeding programs to improve leaf rust resistance.

Breeding for stripe rust resistance in spring wheat germplasm adapted to Khyber Pakhtunkhwa province of Pakistan

BGRI 2018 Poster Abstract
Fahim Ullah Khan Barani Agricultural Research Station, Kohat
Fida Mohammad, Muhammad Imtiaz

Stripe rust is one of the major limiting factors in wheat production. An objective-based breeding program was initiated at Barani Agricultural Research Station (BARS), Kohat in 2013/14 to transfer APR genes from CIMMYT and ICARDA spring wheat lines into wheat germplasm well adapted in Khyber Pakhtunkhwa (KPK). Nine high yielding but stripe rust susceptible KPK wheat varieties were crossed in various combination with 17 CIMMYT and ICARDA wheat lines carrying resistance genes. The resultant 79 F1s were backcrossed with respective susceptible parents followed by single plant selection in F2 generation. During 2015/16, 367 segregating populations/lines were screened in multi-environment stripe rust tests within Khyber Pakhtunkhwa. Sixty-nine out of 367 lines showing adequate resistance were again screened for strip rust resistance at hot spot and in yield trial at BARS, Kohat during 2016/17. Seventeen lines showed considerable resistance and were higher yielding than check cultivars. Lines exhibiting adequate resistance will be further tested in advanced yield trial at provincial and national level for possible release of new varieties in wheat.

Sources of Resistance to Septoria Tritici Blotch Identified in Ethiopian Durum Wheat

BGRI 2018 Poster Abstract
Carlo Fadda Bioversity International
Bogale Nigir, Cherinet Alem, Yosef G. Kidane, Mario Enrico Pè, Matteo Dell’Acqua

Septoria tritici blotch (STB) is a devastating fungal disease affecting durum and bread wheat cultivation worldwide. The search for resistance sources in untapped genetic resources may speed up breeding for STB resistance. Ethiopian durum wheat landraces represent a valuable source of allelic diversity for several traits, including disease resistance. In this study, we measure STB phenotypes under natural infection on two interconnected populations: i) a diversity panel comprising 318 Ethiopian durum wheat lines, mostly farmer varieties, and ii) a nested association mapping (NAM) population developed from a subset of the diversity panel. Phenology, yield and yield component traits were concurrently measured in the populations. We evaluated the distribution of STB resistance in Ethiopian genetic materials and the relationship existing between STB resistance and agronomic traits. STB resistance sources were found in landraces as well as in NAM lines. The genetic material was genotyped with more than 13 thousand genome-wide SNP markers to describe the linkage disequilibrium and genetic structure existing within the panels. The genotyping information was combined with phenotypes to identify marker-trait associations and loci involved in STB resistance. We identified several loci, each explaining up to 10% of the phenotypic variance for disease resistance. We developed KASP markers tagging the most interesting loci to allow the uptake of our results in a breeding perspective. Our results showed that the Ethiopian untapped allelic diversity bears a great value for studying the molecular basis of STB resistance and for breeding for resistance in local and international material.

Wheat disease surveillance and monitoring in Bangladesh

BGRI 2018 Poster Abstract
Md Farhad Wheat Research Centre, Bangladesh Agricultural Research Institute
Kishwar-E-,Mustarin, Md Mostofa Ali, Reza, Krishna Kanto, Roy, Md. Ashraful, Alam, Md. Rezaul, Kabir, MD Abdil, Hakim, Md Monwar, Hossain, Md Rabiul, Islam, Tim, Krupnik, Md Forhad, Amin, Md. Mosharraf, Hossain, Nure Alam, Siddque, Paritosh Kumar, Malaker, Maricellis, Acevedo, Noresh Chandra Deb, Barma

Disease surveillance and monitoring has been regularly organized by Wheat Research Centre (WRC), in major wheat growing areas of Bangladesh since 2010-11 to track the current status of common diseases, first outbreak of new disease(s), the pathogen hotspot and identify new virulent races. Besides the paper based traditional survey, scientists of WRC are now using different tools like Smartphone/Tablet with supporting applications. Several trainings were arranged under DGGW project on rust tool box in Bangladesh. Among all smartphone applications, RustSurvey is the easiest and handy application which integrates with the SAARC Surveillance Toolbox.
A disease surveillance program on wheat blast was organized in Mid February 2017 followed by hands on training in collaboration with CIMMYT and CU, USA. Out of 103 sites surveyed, 33 sites were found infected with wheat blast. Overall disease incidence was comparatively lower than the previous season with low disease severity (5-10%). Surveillance program on rust diseases was also conducted in early March 2016. Among 102 rust survey sites stem rust and yellow rust was not found, but leaf rust occurred with varying levels of severity depending on field locations, sowing times and cultivars grown. About 52% of the 102 fields investigated had leaf rust, and almost 73% of the infected fields showed low (<20%), 21% moderate (20-40%) and only 6% showed high (more than 40%) disease severity. Timely (15-30 November) planted crops largely escaped or had less disease compared to those planted late in the season. The predominant cultivar Prodip as well as BARI Gom 25 and 26 showed zero to high disease levels with MSS type reactions. BARI Gom 21, 28, 29 and 30 were free from leaf rust infection. Furthermore, Spot blotch was found in most of the region with low to high level field incidence depending on crop growth stage.

Achieving triple rust resistance in wheat through combination of phenomic and genomic tools

BGRI 2018 Poster Abstract
Urmil Bansal University of Sydney Plant Breeding Institute
Naeela Qureshi, Vallence Nsaiyera, Pakeer Kandiah, Mesfin Gesesse, Mandeep Randhawa, Mumta Chhetri, Bosco Chenayek, James Kolmer, Miroslav Valarik, Zaroslav Dolezel, Beat Keller, Matthew Hayden, Justin Faris, Harbans Bariana, Vanessa Wells

Dr. Norman Borlaug stated that rust never sleeps and this enables rust pathogens to produce new strains capable of putting rust resistance genes to rest. These pathogens continue to pose threats to global wheat production. Wheat breeders have made significant progress to control rust outbreaks using conventional selection technologies; however, some critical shifts in pathogen populations have let them down. Rapid evolution in molecular marker technologies in the last 15 years and refinement of phenomic facilities have expedited the process of discovery and characterisation of rust resistance genes to underpin the development and validation of markers closely linked with genetically diverse sources of resistance. A high proportion of the formally named rust resistance genes were characterized in the 21st century and markers closely linked with these genes have been developed and validated. The marker tagged sources of resistance to three rust diseases have equipped the wheat breeding community with tools to deploy combinations of all stage and adult plant resistance genes in future wheat cultivars. The question that whether we have enough resistance genes discovered to compete against the ever-awake rust pathogens. In our opinion, we cannot be complacent and discovery needs to continue to ensure food security. This presentation will discuss the role of advances in phenomic and genomic technologies to achieve durable rust control in wheat.

Durum wheat adaptation and yield formation as affected by Ppd-1 photoperiod sensitivity genes

BGRI 2018 Poster Abstract
Dolors Villegas Institute of Agriculture and Food Research and Technology
Karim Ammar, Susanne Dreisigacker, Josí María Arjona, Conxita Royo

Understanding the effect of genetic factors controlling flowering time is crucial to fine-tune crop adaptation to each target environment and maximize yield.
A set of spring durum wheat inbred lines carrying all but one of the possible allelic combinations at Ppd-A1 and Ppd-B1 genes was developed through a collaboration between IRTA and CIMMYT. The collection was grown during several years at four sites at latitudes ranging from 19?N to 41?N in order to assess the effect of Ppd-1 genes on development, biomass production and allocation, as well as grain yield formation.
Environmental constraints were responsible for most of the observed variation for flowering time and yield components. Latitude was a main driver of flowering time, which was later in northern sites and associated with lower minimum temperatures before flowering. Data on environmental constraints explaining a large proportion of grains m-2 and kernel weight variation will be presented. The effect on flowering time of Ppd-A1 alleles conferring photoperiod insensitivity was enhanced at sites with average daylength before flowering lower than 12h. Ppd-A1 caused a stronger effect on flowering time than Ppd-B1, which was found responsible for differences in grains m-2, associated with longer photoperiods from double-ridge to terminal spikelet stages. These differences in grains m-2, however, did not result in higher yields due to kernel weight compensation. Late flowering genotypes carrying alleles conferring photoperiod sensitivity had greater biomass at anthesis but it did not confer superior yields. Early flowering times were associated with higher yields in autumn-sowing sites due to a large contribution to yield of current photosynthesis during grain filling. Early flowering genotypes tended to yield more due to higher kernel weights, and the interaction of allele combination x environment will be discussed in the context of using allelic information as environment-specific guideline in breeding efforts.

Aecial infection status of Berberis spp. in Kastamonu province of Turkey

BGRI 2018 Poster Abstract
Nil?fer Akci Central Research Institute for Field Crops, Yenimahalle, Ankara, Turkey
Aziz Karakaya

Berberis species are important alternate hosts and generate new races of stem rust fungus, Puccinia graminis f. sp. tritici and yellow (stripe) rust fungus Puccinia striiformis. Berberis species are common in Kastamonu province of Turkey. In 2016 and 2017, surveys were conducted in Kastamonu province in order to elucidate aecial infection status of Berberis species in this region. In 2016, the central region and A?l?, Ara?, Daday, ?hsangazi, Seydiler, Ta?k?pr? and Tosya regions and in 2017 central region and Ara?, Daday, Han?n?, P?narba??, Seydiler, Ta?k?pr? and Tosya regions of Kastamonu province were investigated. It appears that there are at least two different Berberis species exist in that area. Berberis species showed variation in terms of fruit color and morphological characters. In 2016, 50 Berberis plants were examined and aecia were present in 38 plants (76%). Percentage of plants parts infected with aecia ranged between 3-80%. In 2017, 64 Berberis plants were examined. Aecia were present in 34 plants (53%). Percentage of plants parts infected with aecia ranged between 3-85%. Aecia were mainly observed on leaves but also observed on other plant parts including flower parts, fruit and young twigs. The role of these aecia and Berberis spp. on rust diseases in Kastamonu province of Turkey should be investigated.

This study was supported by General Directorate of Agricultural Research and Policies, Turkey (Project No: TAGEM-BS-15\12-01\02-02).

Pathogenic diversity in Puccinia striiformis f. sp. tritici isolates from Pakistan

BGRI 2018 Poster Abstract
Javed Iqbal Mirza Crop Diseases Research Institute, PARC Substation, Murree Pakistan
Sufyan,Muhammad, Abid Majeed, Satti, Munir, Anjum, Fayyaz, Muhammad, Atiq ur Rehman, Rattu, Imtiaz, Muhammad, , , , , , , , , , , , , , , , , ,

225 Puccinia striiformis f.sp. tritici isolates collected from wheat growing areas of Pakistan during 2013-2016 were analyzed using 18 near isogenic yellow rust differentials. Seventy eight races were identified among collection in which 20 were common (n > 2). Rest of the races were very rare and encountered only once (n=1). Races 574212, 574232, 474232, 474233, 574213 and 434232 were most frequent (n> 15). Pathogenic diversity analysis of the collection reveal high diversity (H =3.57) of the P. striiformis population of pakistan. On the basis of phenotypic response to yellow rust genes, the most frequent races could be grouped into 5 diverse groups. Distinct grouping was also observed in rarely encountered isolates. Most of the races were highly complex and 80% isolates had complexity ranging from 8 to 11. Virulence frequency for Yr6, Yr7, Yr8, Yr17, Yr27, Yr43 & YrExp2 remained above 80% while that of Yr1, Yr9 and Yr44 remained over 40%. Partial virulence was detected for Yr5, while virulence to Yr10, Yr15, YrSP was found in < 4% isolates. Paper discuss spatial and temporal distribution of P. striiformis races in Pakistan.

Wheat disease surveillance and monitoring in Bangladesh

BGRI 2018 Poster Abstract
Md Farhad Wheat Research Centre, Bangladesh Agricultural Research Institute
Kishwar-E-,Mustarin, Md Mostofa Ali, Reza, Krishna Kanto, Roy, Md. Ashraful, Alam, Md. Rezaul, Kabir, MD Abdil, Hakim, Md Monwar, Hossain, Md Rabiul, Islam, Tim, Krupnik, Md Forhad, Amin, Md. Mosharraf, Hossain, Nure Alam, Siddque, Paritosh Kumar, Malaker, Maricellis, Acevedo, Noresh Chandra Deb, Barma

Disease surveillance and monitoring has been regularly organized by Wheat Research Centre (WRC), in major wheat growing areas of Bangladesh since 2010-11 to track the current status of common diseases, first outbreak of new disease(s), the pathogen hotspot and identify new virulent races. Besides the paper based traditional survey, scientists of WRC are now using different tools like Smartphone/Tablet with supporting applications. Several trainings were arranged under DGGW project on rust tool box in Bangladesh. Among all smartphone applications, RustSurvey is the easiest and handy application which integrates with the SAARC Surveillance Toolbox.
A disease surveillance program on wheat blast was organized in Mid February 2017 followed by hands on training in collaboration with CIMMYT and CU, USA. Out of 103 sites surveyed, 33 sites were found infected with wheat blast. Overall disease incidence was comparatively lower than the previous season with low disease severity (5-10%). Surveillance program on rust diseases was also conducted in early March 2016. Among 102 rust survey sites stem rust and yellow rust was not found, but leaf rust occurred with varying levels of severity depending on field locations, sowing times and cultivars grown. About 52% of the 102 fields investigated had leaf rust, and almost 73% of the infected fields showed low (<20%), 21% moderate (20-40%) and only 6% showed high (more than 40%) disease severity. Timely (15-30 November) planted crops largely escaped or had less disease compared to those planted late in the season. The predominant cultivar Prodip as well as BARI Gom 25 and 26 showed zero to high disease levels with MSS type reactions. BARI Gom 21, 28, 29 and 30 were free from leaf rust infection. Furthermore, Spot blotch was found in most of the region with low to high level field incidence depending on crop growth stage.

How to adapt durum wheat when the environment tries everything to kill it

BGRI 2018 Poster Abstract
Filippo Maria Bassi ICARDA, Rabat
Khaoula El Hassouni, Priyanka Gupta, Hafssa Kabbaj, Meryam Zaim, Amadou Tidiane Sall, Bouchra Belkadi, Ayed Al-Abdallat, Ahmed Amri, Rodomiro Ortiz, Michael Baum

Durum wheat is the tenth most important crop in the world, but its cultivation is mostly limited to harsh, arid, and heat prone marginal lands. Breeding for tolerance to these conditions is often considered the most strategic approach to ensure adaptation, especially when paired with best agronomical practices. The word ‘adaptation’ summarizes all the research efforts conducted to identify the many traits controlling the mechanisms for withstanding or escaping the traceries of the environment. It can be summarized as “GGE vs E”. The durum wheat breeding program of ICARDA deploys targeted phenotyping methods in combination with genomic scans to dissect these ‘adaptive’ traits into simple loci. These loci can then be pyramided via a combination of international field testing, markers assisted selection, genetically-driven crossing schemes, and genomic selection to derive climate-ready cultivars. Here, several examples of this approach are presented and their implications for ‘adaptation’ are discussed.

Speed breeding with genomic selection to accelerate genetic gain for yield in spring wheat (Triticum aestivum)

BGRI 2018 Poster Abstract
Amy Watson University of Queensland

Genomic selection (GS) in wheat can accelerate yield gain principally through a reduction in breeding cycle duration. A method for rapid generation advance called ?speed breeding? (SB) enables up to six generations of spring wheat per year, and could be used to accelerate breeding population development and be combined with GS in various breeding schemes to enable even further gains. SB and GS could be combined through a variety of different scenarios using single seed descent and also by applying GS to segregating populations in the glasshouse. Selected lines could then go into multi-location field trials for final selections and to obtain information for updating the prediction model. The increase in speed in these scenarios compared with field-based breeding schemes could greatly improve genetic gain for valuable target traits, such as yield. To test these hypotheses, a 260 multi-parent spring wheat population, genotyped with 8,000 DArT polymorphic markers, underwent yield trials over three years. Yield prediction accuracy was accessed using five-fold cross validation and predicting across years. Using these results, the rate of genetic gain achieved through either phenotypic selection in the field or a combination of SB and GS in the glasshouse were calculated. Results indicate that incorporating GS into SB growing systems would result in a higher rate of genetic gain compared to phenotypic or more traditional GS breeding schemes, due to the greater number of generations produced per year. This approach may be able to be coupled with multi-trait GS prediction models to increase accuracy, advance genetic gain and wheat variety development.

Towards a public breeding decision support system: Data analysis and management activities in CIMMYT's Global Wheat Program

BGRI 2018 Poster Abstract
Umesh Rosyara CIMMYT
Rosemary,Shrestha, Kate, Dreher, Victor, Jun Ulat, Luis A., Pubela Luna, Susanne, Dresigacker, , , , , , , , , , , , , , , , , , , ,

The Global Wheat Program of CIMMYT is one of the largest public breeding programs in the world consisting of millions of lines/ genotypes derived from thousands of crosses evaluated under using a shuttle breeding cycle and multi-environment testing. The germplasm is phenotyped for conventional (such as yield and grain quality) as well as non-conventional traits (physiological traits) in field and greenhouse conditions. The breeding germplasm is also screened with genome-wide markers (using Illumina SNP array, genotyping-by-sequencing, or DArTseq platforms) and/or multiple gene/QTL region-specific molecular markers (using KASP platform). All genotyped samples are registered in the “DNA SampleTracker,” a software system for tracking DNA samples developed at CIMMYT. In collaboration with High Throughput Genotyping Platform project, the plant sample and data collection methods are optimized. Meanwhile, the extensive wheat genealogies and phenotypic information have been maintained in the International Wheat Information System and will be transferred to a new Enterprise Breeding System. Furthermore, several bioinformatics/statistical genetics methods with the objectives of gene discovery and genomic prediction have been developed and utilized for optimizing genomics-assisted selection. The wheat team is a member of “Genomic Open-source Breeding Informatics Initiative (GOBII)” which aims to develop and implement genomic data management systems to enhance the capacity of breeding programs. Under this initiative, a new genomics database has been built and a pilot wheat version is being tested at CIMMYT. Several decision support tools are also under collaborative development, such as a Genomic Selection Pipeline based on Galaxy, Flapjack-based F1/line verification, and marker assisted backcrossing tools. Additional tools are envisioned for the future including a Cross-Assistor and Selection-Assistor. The ultimate aim is to seamlessly connect the genomic database, phenotypic database, and decision support tools to support the breeding selection process and to lead to the development of cultivars with increased rates of genetic gain.

Assessment of slow rusting of landraces of bread wheat to Puccinia striiformis f.sp. tritici under artificial field inoculation

BGRI 2018 Poster Abstract
Fedaa Alo ICARDA

Yellow rust caused by Puccinia striiformis f.sp. tritici, is the most devastating fungal disease of wheat, especially in CWANA region. Growing cultivars with durable resistance is the most economical control measure. A field study was conducted to evaluate 500 bread wheat landraces along with the susceptible control ?Morocco? using artificial inoculation under field conditions at Tel Hadia, Syria during 2010-11 and 2011-12 growing seasons. The most prevailing yellow rust virulent race 70E214 was used for artificial inoculation. The disease scoring started when the disease severity was more than 50 % on the leaves of the susceptible check ?Morocco? and continued for four scorings at the intervals of 7 days. Slow rusting resistance was assessed based on the development of disease over time using the Area under Disease Progress Curve (AUDPC), Coefficient of Infection (CI), Final rust Severity (FRS), Infection Rate ?(r)? and Relative Resistance Index (RRI). None of the landraces showed immune reaction and 10% showed lowest values for all parameters, suggesting that resistance in these landraces was controlled by major genes. Approximately 65% of landraces were marked as having different levels of slow rusting and 25% were highly susceptible. Cluster analysis based on partial resistance parameters revealed two major clusters: Susceptible and low level of slow rusting were grouped in the first cluster; Resistant, high level and moderate level of partial resistance were grouped in the second cluster. By comparing the results obtained from RRI and others parameters, we found that landraces with very low values for all parameters exhibited high RRI value of 9, while those that showed high, moderate and low levels of slow rusting, had RRI ranges of 8-9, 7-8 and 5-7, respectively. The landraces with maximum values from each parameter showed very low RRI values of less than 5.

Marker assisted backcross breeding for incorporation of rust resistance in Indian wheat varieties

BGRI 2018 Poster Abstract
Chandra Nath Mishra ICAR Indian Institute of Wheat and Barley Research, Karnal
Satish Kumar, Rekha Malik, Garima Singhroha, Vinod Tiwari, Gyanendra Pratap Singh

Breeding rust resistant cultivars using conventional methods is time-consuming, complex and slow, but molecular markers offer a rapid alternative for developing cultivars with improved disease resistance. Three wheat cultivars, DBW88, DBW107, and DBW110, from different production zones were used as recipients for incorporation of resistance genes using a marker-assisted backcross (MAB) breeding approach. Leaf rust resistance gene Lr32 is being incorporated into all the three varieties, stripe rust resistance gene Yr15 is being incorporated into DBW88 and DBW107, and stem rust resistance gene Sr26 is being added to variety DBW110. Lines PBW703 (Yr15), FLW15 (Lr32) and Avocet (Sr26) were used as donors. Six cross combinations viz., DBW88/PBW703, DBW107/PBW703, DBW88/FLW15, DBW107/FLW15, DBW110/FLW15 and DBW110/Sr26 were made at Karnal during 2015-16 and the crosses were grown at IIWBR-RS, Dalang Maidan for backcrossing. BC1F1 plants were raised at Karnal during 2016-17. Both foreground and background selections were practiced in each combination. SSR markers gwm264 and barc135 were used for foreground selection of Lr32, marker barc8 was used for selection of Yr15, and markers Sr26#43 and BE518379 were used to detect presence and absence of Sr26. From 90 to 127 polymorphic SSR markers chosen for each cross from an initial set of 800 screened on the parents are being used for background selection.

Identification of resistant sources against rusts of wheat

BGRI 2018 Poster Abstract
Muhammad Fayyaz Crop Diseases Research Institute, National Agricultural Research Center, Park Road Islamabad, Pakistan
Anjum Munir, Khalil Ahmed Khanzad, Javed Iqbal Mirza, Shahzad Asad, Atiq ur Rehman Rattu, Muahmmad Imtiaz

Evaluation of candidate lines to develop resistant varieties at multiplications in Pakistan is a regular activity which has been successfully done for many years. This approach assists in generation of future resistant cultivars around appropriate genes combinations thereby providing durable resistance outputs for wheat productivity. This year, National Uniform Wheat Yield Trial (NUWYT) comprised of 60 candidate lines. Among these 15 lines were also present in the last years NUWYT. The two years data revealed that there was only one line V-12066 resistant to all three rusts during the two consecutive seasons 2015-16 and 2016-17. Four candidate lines NR-487, V-122557, PR-115 and NRL-1123 were found resistant to yellow and leaf rust during 2015-16 and 2016-17. A candidate line DN-111 was found resistant to leaf and stem rust. There were three lines NW-1-8183-8, NW-5-20-1 and MSH which were found resistant to leaf rust only during two consecutive seasons. Similarly, two candidate lines V-122559 and QS-3 were found resistant to stem rust only, while one line NR-443 was resistant to yellow rust only. The present study provide the screening and evaluation system of Pakistan for promoting and releasing the resistant wheat varieties.

Economic impact of front line demonstrations on wheat in the Semi-Arid tropics of western Maharashtra, India

BGRI 2018 Poster Abstract
Vijendra Baviskar Agharkar Research Institute Pune
Vijendra Baviskar, Balgounda Honrao, yashavanthakumar kakanur, Vilas Surve, Deepak Bankar, Vitthal Gite, Ajit Chavan, Vijay Khade, Juned Bagwan, Shrikant Khairanar, Sameer Raskar

Frontline demonstrations (FLDs,) on wheat were conducted by Agharkar Research Institute, Pune, during last five rabi seasons from 2012-13 to 2016-17 at farmer’s fields of Pune and Satara district under wheat growing area of semi-arid tropics of western Maharashtra, India. Before conducting FLDs, a group meeting held every year in the selected village and specific skill training had imparted to the randomly selected farmers regarding adoption of different improved aspects of cultivation. FLDs comprised of improved wheat varieties viz., MACS 6222, MACS 6478, MACS 3125 (d) and MACS 2971(dic) for Peninsular Zone of India. About 50 ha of FLDs on improved wheat varieties were conducted with active participation of 50 farmers covered an average of 10 farmers and 10 ha per year. Two recent varieties, MACS 6222 and MACS 6478 had shown higher grain yield, ranging between 15 to 55 per cent more over local check and farmer practice than all other FLDs. Recommended packages and practices of wheat FLDs gave higher value of yield, net return and high benefit cost ratio as compared to local check over the years of study. The study has revealed that five years mean extension gap of 4.48 to 9.67 q/ha and technology gap ranging between 11.00 to 22.22 q/ha depending on the variety during the period of study. Net returns of Rs. 63042/ha was observed from improved practice than in the farmer’s practice of Rs. 50108/ha and with benefit cost ratio of 3.07 and 2.79 respectively. On average basis, the incremental benefit cost ratio was found as 2.83. In frontline demonstrations, the yield potential of wheat has been enhanced largely due to the increase in the knowledge of farming community and adoption of improved production techniques by farmers.

Impact of Monsanto's Beachell-Borlaug International Scholars Program

BGRI 2018 Poster Abstract
Edward Runge AgriLife Research, Texas A&M University
David Baltensperger

Monsanto, through the MBBIScholars Program, has invested $13 million over an 8 year period for training rice and wheat breeders from around the World. The Judging Panel for MBBISP selected 89 Scholars from 432 applicants. The selected scholars were from 30 different countries. Scholars selected included 35 young ladies and 54 young men, 37 are in rice breeding and 52 in wheat breeding. Currently 28 Scholars are still completing their PhD programs (As of 8/8/2017). This past year Monsanto established the “Ted Crosbie Monsanto Beachell-Borlaug International Scholars Impact Award” to begin recognizing Scholar contributions. To be eligible for the “Ted Crosbie MBBIScholars Impact Award,” scholars must have received their PhD and must apply for the award. Bhoja Basnet, selected as an MBBIScholar in 2009 who is now in charge of CIMMYT’s Hybrid Wheat Breeding program, was selected to receive the “Ted Crosbie Monsanto Beachell-Borlaug Scholars Program Impact Award” this year. Scholar contributions are in wheat and rice breeding as well as in other crops. Hopefully the Ted Crosbie MBBIScholars Impact Award will continue to recognize accomplishments of Scholars into the future. MBBIScholars are making an impact and we look forward to recognize their career contributions. Employment of Scholars post PhD will be reviewed.

Economic impact of front line demonstrations on wheat in the Semi-Arid tropics of western Maharashtra, India

BGRI 2018 Poster Abstract
Vijendra Baviskar Agharkar Research Institute Pune
Vijendra Baviskar, Balgounda Honrao, yashavanthakumar kakanur, Vilas Surve, Deepak Bankar, Vitthal Gite, Ajit Chavan, Vijay Khade, Juned Bagwan, Shrikant Khairanar, Sameer Raskar

Frontline demonstrations (FLDs,) on wheat were conducted by Agharkar Research Institute, Pune, during last five rabi seasons from 2012-13 to 2016-17 at farmer’s fields of Pune and Satara district under wheat growing area of semi-arid tropics of western Maharashtra, India. Before conducting FLDs, a group meeting held every year in the selected village and specific skill training had imparted to the randomly selected farmers regarding adoption of different improved aspects of cultivation. FLDs comprised of improved wheat varieties viz., MACS 6222, MACS 6478, MACS 3125 (d) and MACS 2971(dic) for Peninsular Zone of India. About 50 ha of FLDs on improved wheat varieties were conducted with active participation of 50 farmers covered an average of 10 farmers and 10 ha per year. Two recent varieties, MACS 6222 and MACS 6478 had shown higher grain yield, ranging between 15 to 55 per cent more over local check and farmer practice than all other FLDs. Recommended packages and practices of wheat FLDs gave higher value of yield, net return and high benefit cost ratio as compared to local check over the years of study. The study has revealed that five years mean extension gap of 4.48 to 9.67 q/ha and technology gap ranging between 11.00 to 22.22 q/ha depending on the variety during the period of study. Net returns of Rs. 63042/ha was observed from improved practice than in the farmer’s practice of Rs. 50108/ha and with benefit cost ratio of 3.07 and 2.79 respectively. On average basis, the incremental benefit cost ratio was found as 2.83. In frontline demonstrations, the yield potential of wheat has been enhanced largely due to the increase in the knowledge of farming community and adoption of improved production techniques by farmers.

Genetics of yield components for drought tolerant wheat (Triticum aestivum L.) genotypes

BGRI 2018 Poster Abstract
Sharmin Ashraf University of Agriculture, faisalabad
ihsan khaliq

Drought tolerance is a polygenic trait, with a complicated phenotype, often confused by plant phenology. Breeding for water stress is more complex since there are many types of abiotic stresses, such as drought, heat and salt. High yielding wheat genotypes viz., Miraj-06, 9452, 9469, 9272, 9277, CMS-127 and three testers Chakwal-50,
Kohistan-97 and Aas-11 were crossed in line ? tester mating design. Seed obtained from crosses was evaluated in field conditions for various agronomic traits under drought conditions. Recorded data were subjected to analysis of variance to determine the genetic variability. The data were analyzed statistically and combining ability
studies were tested using line ? tester analysis to find the relationship between different traits of wheat. High significant differences were observed among the lines and testers for yield related traits under stress conditions.

The female line 9452 proved to be best line on the basis of mean performance of traits under water stress. In case of testers, the male parent variety Chakwal-50 retained its performance in maximum number of traits closely followed by Aas-11. The cross combination 9272 ? Aas-11 proved best for attaining highest mean for most of
traits. In case of GCA effects line 9277 and tester Aas-11 proved best. The cross combinations 9277 ? Chakwal-50, 9452 ? Kohistan-97 exhibited highest SCA effects. The superior genotypes and crosses can be combined to develop new promising and improved varieties under water stress conditions.

Variation in Leaf Tip Necrosis and its effect on yield traits in wheat

BGRI 2018 Poster Abstract
VinodKumar Mishra Institute of Agricultural Sciences, Banaras Hindu University, India-221005
Punam Singh,Yadav, Naveen Kumar, Umesh Chandra, Dubey, Ramesh Chand, Sundeep Kumar, Arun Kumar Joshi

Four leaf rust adult plant resistance genes (Lr34, Lr46, Lr67 and Lr68) are known to be associated with leaf tip necrosis (LTN). LTN caused by these genes is different from each other at phenotypic level. LTN associated with APR genes Lr34, Lr46 and Lr67 has been designated as Ltn1, Ltn2 and Ltn3. Seventy-seven CIMMYT genotypes were selected to find out the association between genotypic and phenotypic variability for LTN and its association with yield traits; 1000 grain weight, grain yield, leaf area and percentage of leaf tip necrosis in the flag leaf of main tiller. All the genotypes were screened for the presence of 3 APR genes with linked markers, csLV34 for Lr34; Xwmc44 and Xgwm259 for Lr46 and Xcfd71 for Lr67. The genotypes were grouped into 5 classes; only Lr34, only Lr46, only Lr67, Lr34+L46+Lr67 and genotypes lacking all three genes. Molecular analysis revealed that 7 genotype with Lr34 only, 6 with Lr46 only, 7 with Lr67 only, 13 with all the 3 genes, and 28 without any Lr gene. Phenotypic data of LTN percentage was compared and it was noted that maximum LTN % was observed for Lr67 (7.811%) followed by Lr46 (7.348%) and Lr34 (6.47%). Surprisingly, presence of all three genes reduced the LTN% (4.7055%) as compared with absence of all three genes (6.011%). It was also observed that the three genes simultaneously reduced 1000 grain weight and plot yield. All three genes increased leaf area highly significantly both when they are alone or together (34.7 to 44.7 cm2) in comparison to those genotypes (24.7 cm2) which lacks these Lr genes and also reduced 1000-grain weight and plot yield but non-significantly.

Characterization and genetic mapping of stem rust resistance in McNair 701 wheat

BGRI 2018 Poster Abstract
Thomas Fetch Agriculture & Agri-Food Canada
Colin Hiebert

Wheat cultivar McNair 701 carries resistance gene SrMcN and is used as a differential line to identify Pgt races using the international letter code nomenclature. The inheritance and location of the resistance gene has not been characterized. We developed a doubled haploid (DH) population from cross LMPG/McNair 701 to study the genetics and chromosomal location of SrMcN. A DH population inoculated with race QCCJB segregated 100 resistant : 94 susceptible, a 1:1 ratio (?2=0.186, P=0.666, NS) indicative of segregation at a single locus. This gene was mapped to chromosome 2DL using the Infinium 90k platform. The map position of SrMcN was similar to that of Sr54, one of two genes previously found in Norin 40. Comparison of stem rust seedling reactions using 12 diverse Pgt races indicated that McNair 701 and an Sr54 line derived from Norin 40 had an identical pattern of responses and similar low infection types (IT=12-) to races LCBNB and QCCJB. Based on the chromosomal location on 2DL and identical seedling responses to Sr54, it is likely that the resistance gene in McNair 701 formerly known as SrMcN is Sr54. This finding will be confirmed by a test of allelism.

Molecular screening of stem rust resistance genes Sr11, Sr26 and Sr31 in wheat genotypes of Azerbaijan

BGRI 2018 Poster Abstract
Samira Rustamova Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences
Shahriyar Sadigov, Alamdar Mammadov, Irada Huseynova

Rust of cereals are considered to be an important disease in many countries, including Azerbaijan. One of these is stem rust caused by Puccinia graminis f. sp. tritici (Pgt). Extensive research on the identification of wheat stem rust resistance genes and effectiveness of these genes in various geographical regions have been conducted. Genetic resistance is one of the most effective ways for controlling stem rust. Sixty-nine stem rust resistance genes (including 45 identified Sr genes and 24 genes with temporary designations) are registered in the Komugi Wheat Genetics Resource Database. It is important to use proper combinations of resistance genes in developing lasting resistance wheat. The main purpose of the study was to identify lines caring Sr11, Sr26 and Sr31 genes, which are effective to the predominant Pgt races in Azerbaijan. Durum and bread wheat genotypes differing in their disease resistance, productivity and other physiological traits were chosen from the wheat gene bank of the Research Institute of Crop Husbandry (Baku, Azerbaijan) for analysis. DNA extraction was carried out according to standard CTAB protocol. RT-PCR performed using KASP markers (KASP_6BL_BS0074288_51 and KASp_6BL_Tdurum contig55744_822) identified nine durum genotypes (out of 34 genotypes) and seven wheat genotypes (out of ten genotypes), caring Sr11. Using the dominant STS marker (Sr26#43) a diagnostic 207 bp amplicon for Sr26 gene, was observed in 11 of the 42 wheat genotypes tested. In eight of the 42 wheat genotypes tested, the diagnostic 1,110 bp amplicon was observed using the Lr26-Sr31-Yr9 locus specific marker iag95, characteristic of Sr31 gene located at 1BL.1RS translocation. For the first time, wheat germplasm in Azerbaijan was analyzed using KASP genotyping technology and genetic resources, and resulted in the identification of wheat lines with effective resistant to Puccinia graminis f. sp. tritici race TKTTF.

System biology to decipher regulatory network hubs that control Zymoseptoria tritici-wheat infection process

BGRI 2018 Poster Abstract
Sarrah Ben M’Barek Laboratory of Molecular Plant Physiology, Biotechnology Center of Borj Cedria (CBBC)
Mahmoud Gargouri, Hesham A.Y Gibriel, Richard B. Todd, Michael F. Seidl, Gerrit H.J. Kema

Septoria tritici blotch disease, caused by the fungus Zymoseptoria tritici, is a major threat to global wheat production. With the recent advances in high-throughput DNA-based technologies, Z. tritici has become a powerful model system for the discovery of candidate determinants that underlie virulence and host specialization. Although a few important virulence/regulatory genes have been identified, a global understanding of the larger regulatory network has not been developed. Therefore, to uncover the transcriptional regulatory networks of the infection cycle and most particularly the regulatory hubs that control the switch between the biotrophic and necrotrophic phases, we applied an integrated approach combining transcriptomics, proteomics, and metabolomics analyses based on the identification of plant and fungal transcription factors and regulators, which we characterized from the newly annotated genome sequence of the reference isolate IPO323 (Grandaubert et al., 2015) and using datasets from Rudd et al. (2015). Bread wheat transcription factors and regulators were identified by querying the proteome and subsequent categorization from the Plant Transcription Factor database (PTFDB). Similarly, Z. tritici transcription factors and regulators were identified and categorized using the PFAM TF family databases, and following fungal transcription factor rules as outlined by Todd et al. (2014) and rules we developed for fungal transcription regulators. Insights into transcription factors and regulators will enable synthetic biology approaches to alter the Z. tritici-wheat interaction and lead to rewiring of the regulatory networks thereby turning off the fungal infection process. Beyond providing insights into the regulatory systems-levels involved in Z. tritici-wheat interaction, we believe that our dataset and approach sets the stage for an emerging series of studies that will decipher the dynamic regulatory networks in other plant-pathogen interactions.

Three years of the Precision Wheat Phenotyping Platform for diseases in Uruguay: current status and future prospects

BGRI 2018 Poster Abstract
Gustavo Azzimonti Instituto Nacional de Tecnologia Agropecuaria (INIA), Estaci?n La Estanzuela, Ruta 50, Km 11, Colonia, Uruguay
Vanesa,Domeniguini, N?stor, Gonz?lez, Richard, Garcia, Carolina, Saint-Pierre, Pawan, Singh, Mart?n, Quincke, Silvia, Pereyra, Silvia, Germ?n, , , , , , , , , , , , , ,

Since 2014 CGIAR-WHEAT Program has promoted the establishment of a network of field-based Precision Wheat Phenotyping Platforms (PWPP) to expand the existing collaborations between CIMMYT, ICARDA and National Agricultural Research System partners. The main goals are improving the quality of data collected and shared among institutions to enhance and accelerate the international wheat breeding, and promote synergism with the private sector and nongovernmental organizations. In 2015, the PWPP-Uruguay was established to test genotypes for multiple diseases: leaf rust, Fusarium head blight and Septoria tritici blotch. These diseases are phenotyped each year in separate field trials artificially inoculated with pathogen isolates identified as representatives of the pathogen regional population. Wheat material is sowed in plots with susceptible checks every 50 entries. Disease severity and other variables related to the disease development are measured using standard international scales at dates when the expression of plant resistance is optimal. In the first three years of the platform, more than 1500 genotypes were screened per year. These materials had diverse origins (more than eight institutions, public and private, from eight countries) and diverse types: from recent commercialized to ancient cultivars, advanced lines, International CIMMYT nurseries, mapping populations or panels. Highly resistant genotypes to multiple diseases could be selected. At the present time, we are developing and adopting advanced phenotyping methods, combining remote sensing and image analysis, and exploring their adaptation to breeding constraints. Also, extension activities as internships, training courses and student projects are being developed. Major future prospects are the enhancement of data and germplasm exchange between platform partners and the PWPP network and the involvement in collaborative phenotyping/genotyping breeding projects.

Wheat stem rust pathogen (Pgt) Identification and Characterization in Egypt using Single Nucleotide Polymorphism (SNP) markers.

BGRI 2018 Poster Abstract
Samar Mohamed Esmail Wheat Dis. Res. Dept., Plant Pathol. Res. Inst., A.R.C., Sakha, Egypt
Les John Szabo

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is one of the most serious disease of wheat worldwide. The discovery of new Pgt races in Africa, Ug99 and its variants, brings a new threat to global wheat production. In this study, 50 single pustule stem rust samples, were collected during 2015-2016 from the International Stem rust Trap Nursery (ISRTN) and commercial wheat fields in Sakha, the most important wheat growing region in Egypt. SNP-genotyping was carried out at USDA-ARS Cereal Disease Laboratory. Infection and genotype data confirmed that none of these samples belonged to the Pgt Ug99 race group. Forty-five samples were successfully genotyped consisting of 12 multi-locus genotypes (MLGs). The majority (86.7%) of the samples belonged to three clades: 10 samples, clade III-B (MLG.04, race TTRTF) collected from Misr 3, Sakha 95 and Sids 14 wheat lines; 12 samples, clade IV-A.2 (MLG.06, race TKTTF) collected from Sr 5, Sr6, Sr7a, Sr7b, Sr8b, Sr9a, Sr9e, Sr10, Sr11, Sr15, Sr16 and Sr17 wheat lines; 17 samples, clade IV-E.2 (MLG.11, race TKKTF) from Sr13, Sr14, Sr19, SrMcN, Sr24, Misr 1, Misr 2, Sakha95 and Sids 12 wheat lines. Pgt samples belonging to clades IV-A.2 and IV-E.2 have been observed from Europe to the Middle East, and samples from clade III-B from the southern Caucasus Mountains, Middle East to northeast Africa. The remaining six samples collected from Sr12, Sr18, Sr20, Sr21, Sr22 and Sr25 wheat lines represent two new genotypes (MLG.14 and MLG.17) that have not been assigned to clades. MLG.14 was also observed in samples from Azerbaijan, Iraq and Eritrea. In contrast, this represents the first detection of MLG.17. These results suggest continued variability of the Pgt population in Egypt therefore, emphasizing the importance regularly monitoring to timely identify new races, and utilize this information in screening and identification of effective sources of resistance.

Wild grass as a reservoir of Fusarium graminearum and source of inoculum

BGRI 2018 Poster Abstract
Michael Fulcher Cornell University
James Winans, Julian Garcia, Kellie Damann, Gary Bergstrom

In addition to causing Fusarium head blight of wheat and other cereals, Fusarium graminearum is associated with dozens of wild or weedy grass species. Their role in the disease cycle and evolution of the pathogen has not been established despite their widespread distribution. A three-year survey of wild grasses in New York (USA) found that inflorescences and overwintered stems were frequently colonized by F. graminearum. Through a series of controlled laboratory experiments, wheat and five common grass species were compared for their potential to support inoculum production. Artificially infested stem tissue from several grasses both retained F. graminearum at higher rates through a single winter and supported greater ascospore production per dry gram than wheat. Susceptibility of these species to root and crown rot was measured with a modified seed germination assay and a diverse panel of F. graminearum isolates. Differences were seen between host species, and some grasses were resistant to infection. Our results indicate that wild grass species may support significant F. graminearum inoculum production while differing in their suitability for root and crown colonization. Studying interactions between F. graminearum and alternative host plants can improve our understanding of evolution in a broad host range pathogen and our ability to predict the risk of crop epidemics. We are currently evaluating isolates collected from wild grasses for mycotoxin production and aggressiveness on wheat.

Defining efficient phenotypic and genetic selection criteria to improve bread wheat yield under drought conditions

BGRI 2018 Poster Abstract
Sahar Bennani National Institute of Agricultural Research
Nsarellah Nasserlhaq, Wuletaw Tadesse, Ahmed Birouk

In the context of climate change, drought is one of the most important and complex abiotic stresses affecting crop production worldwide. The adoption of an appropriate technological package, principally drought tolerant varieties, may overcome these challenges to meet global food security needs for the rapidly growing human population, particularly in developing countries. Therefore, this research was carried out to identify efficient phenotypic and genetic selection criteria to identify drought tolerant wheat varieties. In this perspective, 200 diverse elite bread wheat lines from ICARDA and CIMMYT were evaluated under four Moroccan environments during the 2015 and 2016 seasons for yield and 15 agro-physiological traits. The same set of genotypes was genotyped using 15k SNPs. Significant environment and genotype environment interaction effects were observed for yield. Average yield reached 3.18t/ha and ranged from 2.45 to 4.27t/ha. The secondary traits were mostly dominated by the environment effect (p<0.001). Based on correlation and regression analysis between grain yield and phenotypic data, the biomass, grain number per m2 and to a lesser extent fertile spikes number and thousand kernel weights (depending of drought scenarios) can be more reliable traits than yield for the identification of drought tolerant genotypes. Moreover, the ground cover and canopy temperature depression can be used as supplementary criteria for more accurate selection. Slow selection on the basis of phenotypic traits may be accelerated and improved by using molecular markers. The genetic analysis highlighted significant SNPs and identified new QTLs linked to yield and the most efficient phenotypic traits under drought conditions. These findings could be useful for breeding drought-resistant wheat cultivars using marker-assisted selection to accumulate these favorable alleles of SNPs associated with yield-related traits to increase grain yield.

Development of adapted wheat lines resistant to Ug99+ with combinations of Sr26, Sr32 and Sr39

BGRI 2018 Poster Abstract
Silvina Baraibar Instituto Nacional de Investigaci?n Agropecuaria (INIA) La Estanzuela
Paula Silva, Clara Pritsch, Miguel Raffo, Silvia Pereyra, Silvia German

Wheat stem rust (SR), caused by Puccinia graminis f. sp. tritici, (Pgt) is considered one of the most destructive diseases of the wheat crop. As Sr24 and Sr31 are the most widely used resistance genes in the Southern Cone of America, wheat crops in this region is under threat of SR outbreaks posed by the potential migration of virulent Pgt Ug99-lineage races (Ug99+). Efforts have to be made to develop adapted lines resistant to Ug99+. Genes Sr26, Sr32 and Sr39 are effective to both Ug99+ and local races of the pathogen. This work is aimed to pyramid two and three of the resistance genes in two locally adapted wheat cultivars (G?nesis 2375 and G?nesis 6.87). Donor lines of Sr26, Sr32 and Sr39 (developed by I. Dundas, University of Adelaide, Australia) and molecular markers Sr26#43, csSr32#1 and Sr39#22r (developed by R. Mago et al., University of Adelaide) were used. Lines with two-gene combinations were developed in two steps. First, tree-way crosses were made by crossing heterozygous F1 plants (derived from crossings donor lines) to either one of the two adapted wheat cultivars. Subsequently, tree-way F1 plants were genotyped and only those with two-gene combinations were backcrossed (BC) twice to the adapted cultivars. Among three-way F1 plants, two-genes combinations were confirmed for Sr26+Sr32 (8 out of 31), Sr26+Sr39 (2 of 115) and Sr32+Sr39 (26 out of 103). In the BC1F1 generation, Sr26+Sr32, Sr26+Sr39 and Sr32+Sr39 combinations corresponded with 9, 9 and 45 out of 99, 27 and 241 plants, respectively. In 2017, 1345 BC2F1 plants are being grown to obtain BC2F2. We plan to intercross plants with two-gene combinations to obtain lines with the three genes which will be used as sources of resistance to develop cultivars with presumably longer lasting resistance to wheat SR.

Genetic analysis for yield and its components in Afghan bread wheat

BGRI 2018 Poster Abstract
Mohammad Bahman Sadeqi Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-University of Bonn
Mohammad Wali,Salari, Kobra, Yusefi, Mohammad, Yusefi, Gul Mohammad, Ajir, Wakil Ahmad, Sarhadi, Jens, L?on, , , , , , , , , , , , , , , , , ,

Bread wheat is a staple food in Afghanistan. Breeding for improving yield and its components in Afghan bread wheat without using new molecular methods such as marker-assisted selection (MAS) and quantitative trait loci (QTL) mapping approaches is difficult. Therefore study of genetic analysis by focus on yield and its components as first steps is necessary. Genetic analyses were performed on a winter wheat core collection of 20 accessions and commercial varieties sampled from different regions of Afghanistan and twenty agronomic traits were evaluated over three years under fully irrigated, rain-fed and drought treatments. Grain yield was the most important trait to water deficit and was highly correlated with other agronomic traits. The germplasm was structured into two sub-populations. Field plots of the genotypes were treated to one of three treatments including full irrigation, rain supplied and rain-sheltered. A randomized complete block design with three replicate was used every year of the trial. For every agronomic trait, variance components, heritability (h2) and genetic correlations was calculated. Results of the study showed that these genotypes may be good source for national breeding programs. The multiple statistical in this study showed that results of genetics correlation and regression analysis are same. Further analysis of these traits with additional experimental data to attain persuasive conclusion is suggested.

Contribution of international nurseries for selection of rust resistant wheat varieties in Tajikistan

BGRI 2018 Poster Abstract
Hafiz Muminjanov Food and Agriculture Organization of the UN
Munira Otambekova, Bahromiddin Husenov, Alexei Morgounov

Wheat as a staple food crop in Tajikistan plays a crucial role for food security of population. However its production is threatened by number of limiting factors, and among them wheat rusts are most devastating disease.
Close collaboration of local scientists and breeders was established with International Agricultural Research Centers, including CIMMYT and ICARDA since early 2000. In the result, a number of high yielding and rust resistant varieties were released in Tajikistan that occupy presently about 40% of total wheat area.
Among the major breeding objectives selection of varieties with high resistance to wheat rusts, especially yellow rust considered as a priority task. The following new varieties originated from CIMMYT international nurseries were released in the country in past years, which bear high resistance to yellow rust: Sarvar (CHEN\AEGILOPS SQUARROSA (TAUS0//BCN/3/BAV92), Yusufi (SOROCA), Vahdat (VORONA SN079), Isfara (SW89.5181/KAUZ), Fayzbaksh (TAM200.KAUZ) and Shokiri (SHARK/F4105W2.1).
During the last three years eight new varieties were submitted for official testing, and two of them already are released in 2017 (Murodi and Durakhshon) and remaining ones are under official testing. The varieties and their origin are followings: Murodi (CHEN/AE.SQ//WEAVER/3/SSERI1), Durakhshon (ATTILA/3*BCN*2//BAV92), Kamol (PYN/BAU//LAGOS-19/3/ID800994.W/VEE), Zarnisor (CROC_1/AE.SQUARROSA(205)//BORL95/3/2*MILAN), Ganj (NAC/TH.AC//3*PVN/3/MIRLO/BUC/4/2*PASTOR), Mehrgon (SAAR/WAXWING), Sipar (FRET 2*2/4/SNI/TRAP #1/3/KAUZ*2/TRAP//KAUZ/5) and Lochin (PJN/BOW//OPATA*2/3/CROC_1/AE.SQ.(224)).

Disease resistance of primary hexaploid synthetic wheat and its crosses with bread wheat

BGRI 2018 Poster Abstract
Gular Gadimaliyeva Genetic Resources Institute, Azerbaijan
N. Aminov, A. Jahangirov, H. Hamidov, Aigul Abugalieva, Vladmir Shamanin, Alexey Morgunov

Hexaploid synthetics have become widely used in bread wheat improvement in recent years, enabling the introduction of specific traits as well as enhancing genetic diversity and development of valuable germplasm. This study demonstrated the difference between two groups of primary synthetics in terms of development rate, plant height, rust reactions, and productivity components. During 2015 and 2016, three groups of synthetics were studied in Azerbaijan (3 sites): Baku (0 masl) under irrigated conditions, Gobustan (850 masl) under dry rainfed conditions and Ujar (20 masl) under irrigated conditions with high salinity. Germplasm was also evaluated for diseases and agronomic traits in Omsk (Russia) in 2016.
All primary synthetics were resistant to leaf rust, several to stem rust, and few to stripe rust. Stripe rust occurred in all years at all sites, proving its importance as major wheat pathogen. Its severity reached intermediate levels in Baku in 2016 (33.7%) and in Gobustan in 2015 (26.8%), and epidemic level in Gobustan in 2016 (72.7%). Gobustan also experienced high levels of stem rust in 2016. These two diseases substantially reduced grain productivity in Gobustan in 2016, especially 1000 kernel weight (30.2 g) and grain weight per spike (1.17 g). . Superior genotypes from all three groups were identified that combine high expression of spike productivity traits and stress tolerance index. Five superior synthetics were selected from each of the three groups, based on grain weight per spike. Only four of these demonstrated resistance to stripe rust (entries 13, 15, 31, and 32). Japanese synthetics (group 3) were susceptible to stripe rust but all demonstrated resistance to stem rust. Synthetics from groups 1 and 3 were all resistant to leaf rust when tested under severe disease pressure in Omsk in 2016.

Population dynamics of wheat stem rust fungus in Indian subcontinent during 2009-2015

BGRI 2018 Poster Abstract
Subhash Bhardwaj ICAR-IIWBR, Regional Station, Flowerdale,Shimla 171002 H.P. India
Pramod Prasad, OmPrakash Gangwar, Hanif Khan, Siddanna Savadi, Subodh Kumar

Stem rust (Puccinia graminis tritici) (Pgt) epidemics have been reported from many wheat growing areas of the world. Stem rust races with virulence to Sr31 (Ug99 type races),are a threat to wheat producing African countries. Currently 11 different variants of the Ug99 lineage have been reported from different countries. Despite no report of Ug99 variants from any of the South Asian countries, the efforts are in place to counter the possible introduction of virulent wheat stem rust races. Stem rust surveillance has been a major component of the rust resistance breeding worldwide. This study reports virulence phenotypes and functional SSR marker based genotypes among stem rust collections in the Indian subcontinent during 2009 to 2015.
Wheat stem rust samples were analyzed on differential sets used for pathotype identification in India. Twelve pathotypes of Pgt were identified in a total of 574 samples analyzed. Pgt pathotypes 40A and 11 were identified in 36% and 32% of the samples, respectively. The stem rust resistance genes Sr7a, Sr26, Sr27, Sr31, Sr32, Sr33, Sr39, Sr40, Sr43, SrTmp and SrTt3 were found to confer resistance to the field population identified during this period. The analysis of SSR marker genotypes data revealed a high degree of variability in the Pgt population, with mean gene diversity and polymorphic information content (PIC) values of 0.56 and 0.50, respectively. STRUCTURE software divided the Pgt populations in to four subpopulations with some admixtures. The FST values of pairs of subpopulations ranged from 0.35 to 0.93 which indicated that the four sub-populations were significantly differentiated. The analysis of molecular variance (AMOVA) determined that 16%, 69% and 15% of the totl variation was between population, among and within individuals, respectively. The information generated here could be a useful guide for resistance breeding and gene deployment programmes for saving South Asian wheat from stem rust.

Current work on rusts, blight and blast on wheat in Bangladesh

BGRI 2018 Poster Abstract
Naresh Barma Bangladesh Agricultural Research Institute
Paritosh Malaker, Mostofa Reza, Abdul Hakim, Krishna Roy, Rabiul Islam, Thakur Prashad Tiwari, Pawan Kumar Singh, Arun Kumar Joshi

The major diseases of wheat in Bangladesh are leaf blight and leaf rust. Yellow rust occurs occasionally with sporadic infection in the northern parts whereas stem rust was observed only in 2014. So far the country is free of Pgt race Ug99. Wheat blast, a devastating head disease, was first reported in 2016. Currently, about 65% of the wheat area in Bangladesh is covered by leaf rust resistant varieties and about 30% of the area is covered by Ug99 resistant varieties. Surveillance and monitoring of diseases is conducted regularly. In 2017, 102 sites were surveyed of which 52% had leaf rust infection. The data were uploaded to the Wheat Rust Tool Box. A separate surveillance and monitoring of wheat blast was conducted on 421 farmers? fields in 24 districts. Different levels of blast incidence were recorded in 77 fields. The Wheat Research Centre in Bangladesh works with CIMMYT and BGRI to develop high yielding rust resistant varieties. This includes screening for response to Ug99 at KALRO, Kenya. However, the current major concern of wheat is wheat blast. The popular variety BARI Gom 26 is highly susceptible to this disease and no current cultivar in Bangladesh carries an acceptable level of resistance to blast. During 2016-17, 20 varieties and advanced lines from Bangladesh and 80 from CIMMYT Mexico, were evaluated. One elite breeding line, BAW 1260, showed resistance (<10% severity) in multiple environment tests and is also resistant to leaf blight and stem rust. This line carries the 2NS translocation from Aegilops ventricosa and will be released soon for commercial cultivation. Pre-release seed multiplication is already underway for rapid dissemination. Among recently released wheat varieties BARI Gom 30 and BARI Gom 32 are moderately tolerant to blast and are being promoted for wider adoption by farmers.

First report of virulence to resistance genes Yrsp, Yr1 and Yr3 by wheat yellow rust pathogen (Puccinia striiformis f. sp. triti

BGRI 2018 Poster Abstract
Safarali Safavi Crop and Horticultural Science Research Department, Ardabil Agricultural and Natural Resources Research and Education Center, Ag
Farzad Afshari

Yellow (stripe) rust caused by Puccinia striiformis f. sp. tritici is the most devastating disease of bread wheat (Triticum aestivum) in the world. A wide range of virulent yellow rust pathotypes is evolving in different regions of the world causing the breakdown of widely utilized sources of resistance in wheat. Hence, the knowledge of virulence factors of pathogen and determining of effective resistance genes in the region will enable breeders to target those useful genes in their breeding programs. During cropping seasons of 2015-2016 and 2016-2017, virulence of the wheat yellow rust was investigated by planting differential cultivars and isogenic lines in a yellow rust trap nursery in Ardabil, northwest of Iran . Results showed stripe rust infections on some cultivars carrying Yr genes such as Yr1, Yr3, and Yrsp previously known to be resistant. The virulence spectrum of race population in Ardabil was identical to the Warrior race or its variants which is different from characterized races in Ardabil by carrying virulence combination for Yr1, Yr3, Yr17, Yr32, and YrSP and is avirulent on Yr8 and Yr27. Except for Yr8, Yr17 and Yr27, the common races in Ardabil are generally avirulent on Yr1, Yr3, and YrSP. This is the first report of race population in Ardabil (Iran) which is similar to the Warrior race or its variants.

Field response to leaf rust of Bangladeshi wheat

BGRI 2018 Poster Abstract
Kishowar-E- Mustarin Bangladesh Agricultural Research Institute
Paritosh Kumar,Malaker, Krishna Kanta, Roy, Md. Mostofa Ali, Reza, Naresh Chandra Deb, Barma, Md., Farhad

Leaf rust is one of the major diseases of wheat in Bangladesh. The farmer fields and trial sites were regularly surveyed for rust assessment from 2010-2011 to 2016-2017 wheat growing seasons. Disease severity was recorded following BGRI protocols. Percentage of fields infected with leaf rust and the levels of disease severity varied with genotype, year, planting time and survey sites. Timely planted wheat either escaped or had less disease compared to late planted crop. Among our cultivated varieties, Shatabdi was either free from infection or exhibited only trace severity with resistant reaction. Variety Saurav, Bijoy, BARI Gom 27 , BARI Gom 28 , BARI Gom-29 and BARI Gom-30 were consistently free from leaf rust infection. BARI Gom 25 and BARI Gom 26 showed low to moderate disease levels with MRMS-MSS reactions, while the variety Prodip demonstrated moderate to high disease severity with susceptible response and it needs to be replaced by resistant variety to sustain wheat productivity.

Global stem rust phenotyping network for wheat improvement

BGRI 2018 Poster Abstract
Sridhar Bhavani CIMMYT
Ruth Wanyera, Godwin Macharia, Ravi Singh, Ayele Babebo, Girma Bedada

An effective partnership between CIMMYT, KALRO, EIAR and Delivering Genetic Gains in Wheat (DGGW) project on global stem rust phenotyping has made a significant progress and impact on the Global wheat community in addressing the threat of Ug99 race group and other important stem rust races in the region. International stem rust phenotyping networks play a key role in evaluating global wheat germplasm from many countries and institutions: identifying new sources of resistance, pre-breeding, CIMMYT-Kenya shuttle breeding, pathogen survey and surveillance, varietal release and genomic selection. About 600,000 lines have been screened against Pgt race Ug99 and derivatives since 2005, and the screening capacity at KALRO has increased to 50,000 lines each year from over 20-25 countries and research institutions each year. The results from international nurseries show a shift to higher frequencies of lines with resistance to race Ug99 since the screening activities were initiated in 2008.
KALRO and EIAR and several national programs have a dynamic and successful breeding programs that benefit from collaboration, testing, and release of materials coming out of the CIMMYT breeding program. The release of over 15 varieties in Kenya as well as in Ethiopia and more than 90 varieties released in several countries globally over the years is a testament to the success of the program. with spillover effects of varieties released in Burundi, Rwanda, and Uganda.
CIMMYT-Kenya shuttle breeding has resulted in rapid recycling of over 2000 breeding populations each year between Mexico and Kenya to evaluate and select lines in early generations against virulent stem rust races in Kenya to ensure lines have adequate levels of resistance are advanced not only in early generations of breeding cycle but also materials in the yield trails (10,000 annually) that are later constituted as international nurseries and distributed to National programs and partners.

Transgenerational response to high temperature stress in Indian bread wheat cultivar HD2967

BGRI 2018 Poster Abstract
Sharmistha Barthakur ICAR NRC Plant Biotechnology
Sushma Khomdram

The present challenge in wheat breeding is to decipher the molecular mechanisms of heat stress response and thermotolerance in detail for future applications. Several reports indicate the ability of plants to maintain a memory of stress exposure throughout their ontogenesis and even transmit it faithfully to the following generation. Here, three diverse genotypes of wheat viz., HD2967, WR544 and C306 were used for thermotolerance assays. The genotype HD2967 was able to withstand heat stress regimes (37?C and 42?C, 2 hours). Harvested seeds were sown and further raised for two consecutive years and phonotypical data evaluated in natural field condition by exposing to heat stress during generative stages in a heat trap chamber. Maximum tiller numbers and flag leaf length were noticed in second generation plant of 37?C heat exposure whereas flag leaf width in second generation 42?C heat exposure relative to the untreated plant. Auricle length showed no difference but plant height was notably increased in the second year in all the heat exposed plants. In grain yield index, ear head length was greater in the second year and fluctuations in grain number was noticed among the heat treated plant with more yields in 42?C and 42?C HTHT in the second year. IRGA and SPAD recording showed high photosynthesis and chlorophyll content in 37?C HTHT. High modulation of transcripts of several genes involved in DNA methylation and heat stress were also observed. The domino effect of heat stress in earlier generation, in this transgenerational analysis, points towards a probable epigenetic effect. Further studies are in progress to confirm and clarify the mechanisms for future manipulation in breeding for thermotolerance.

Field response to leaf rust of Bangladeshi wheat

BGRI 2018 Poster Abstract
Kishowar-E- Mustarin Bangladesh Agricultural Research Institute
Paritosh Kumar,Malaker, Krishna Kanta, Roy, Md. Mostofa Ali, Reza, Naresh Chandra Deb, Barma, Md., Farhad, , , , , , , , , , , , , , , , , , , ,

Leaf rust is one of the major diseases of wheat in Bangladesh. The farmer fields and trial sites were regularly surveyed for rust assessment from 2010-2011 to 2016-2017 wheat growing seasons. Disease severity was recorded following BGRI protocols. Percentage of fields infected with leaf rust and the levels of disease severity varied with genotype, year, planting time and survey sites. Timely planted wheat either escaped or had less disease compared to late planted crop. Among our cultivated varieties, Shatabdi was either free from infection or exhibited only trace severity with resistant reaction. Variety Saurav, Bijoy, BARI Gom 27 , BARI Gom 28 , BARI Gom-29 and BARI Gom-30 were consistently free from leaf rust infection. BARI Gom 25 and BARI Gom 26 showed low to moderate disease levels with MRMS-MSS reactions, while the variety Prodip demonstrated moderate to high disease severity with susceptible response and it needs to be replaced by resistant variety to sustain wheat productivity.

Response of durum wheat genotypes to rust in preliminary and regular yield trials

BGRI 2018 Poster Abstract
Iqra Ghafoor Wheat Research Institute, Ayub Agricultural Rsearch Institute Faisalabad
Amna Kanwal, Mehwish Makhdoom, Javed Ahmed, Makhdoom Hussain

Wheat is the most important cereal crop in Pakistan because it contributes major portions of daily calorie intake. Rust is an increasing threat to wheat production and ultimately food security in Asian countries. The purpose of the present study is to identify the suitable wheat lines that could significantly resist rust pathogen without compromising yield. 60 durum wheat lines, entered in preliminary and regular yield trials, were tested for various morphological and physiological traits along with adult plant disease reaction under natural rust infestation. Results indicated that there was higher incidence of yellow rust as compared to leaf rust as ten genotypes were susceptible to leaf rust. Whereas seven lines were moderately susceptible, 14 were moderately resistant and two were completely susceptible to yellow rust. These findings suggested that future breeding program should be directed towards the developments of resistant cultivars that could resist variable strains of rust pathogen under changing climatic conditions.

Global network for precision field-based wheat phenotyping

BGRI 2018 Poster Abstract
Carolina Saint Pierre CIMMYT
Michel E. Ghanem, Sarrah Ben M’Barek, Gustavo Azzimonti, Silvia Pereyra, Silvia Germán, Felix Marza, Amor Yahyaoui, Pawan Singh, Michael Baum, Hans-Joachim Braun

Based on a global network of wheat partners, precision field-based wheat phenotyping platforms are being developed with the support of the CGIAR Research Program on Wheat and co-investing national agricultural research institutes. This collaboration strategy aims to i) strengthen the quality of phenotypic data to fully exploit the potential of genomic data, ii) strategic prioritization of activities based on trait screening capacities and regional needs, iii) sharing knowledge and germplasm to accelerate superior germplasm development and dissemination, iv) development of capacities. Phenotyping activities are being conducted for wheat blast (Magnaporthe oryzae) in Bolivia, Septoria tritici blotch (STB) in durum wheat in Tunisia, and for multiple diseases (leaf rust, Fusarium head blight, and STB) in bread wheats in Uruguay. Subject to further funding, additional platforms will be implemented, to contribute to a faster development of broad genetic based resistant, high yielding wheat varieties, and complementing evaluations currently performed for diseases and heat, drought and yield potential (Kenya, Ethiopia, Turkey, Mexico).

Existence of divergent lineages, virulence phenotypes and DNA methylation in the Canadian Puccinia striiformis population

BGRI 2018 Poster Abstract
Gurcharn Singh Brar Crop Development Centre/Department of Plant Science, University of Saskatchewan, Saskatoon, Canada
Sajid Ali, Dinah Qutob, Steve Ambrose, Ron Maclachlan, Kun Lou, Curtis Pozniak, Yong-Bi Fu, Andrew Sharpe, Randy Kutcher

Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is one of the most important pathogens of wheat. Attempts have been made in the past to characterize the worldwide genetic structure of Pst populations, excluding Canada. Characterization of 59 isolates identified 33 races with three most common races representing half of the population and subtle differences in races of eastern and western prairies. For molecular characterization, 48 isolates were sequenced to obtain SNPs and genotyped with Pst-specific SSR markers. Isolates that were suspected of recombination based on SNP data were examined for their telia production ability as a proxy for sexual recombination. The study revealed that the majority of the population was clonal, however, not exclusively clonal, with the existence of four genetic lineages. Two lineages previously reported were identified: PstS0, representing an old northwestern-European and PstS1, an invasive warmer-temperature adapted lineage. Additionally, two new lineages, PstPr and PstS1-related, were detected that have not been reported previously. The PstPr and PstS1-related lineages produced more telia than the other lineages and had double the number of unique recombination events compared to PstS0 and PstS1. PstPr was concluded to be a sexual recombinant and an exotic incursion, which was closely associated with PstS5, PstS7 (Warrior), and PstS8 (Kranich) lineages, all of which arose by sexual recombination in the center of diversity – the Himalayan region. The total phenotypic variation in the population could not be explained solely by molecular genotypes, and a hypothesis on existence of epigenetic machinery in the Pst genome was tested. Homologs of the DNMTases class (DNMT1) were identified, providing compelling evidence of a role for DNA methylation. As a first report of DNA methylation, an average of ~5%, 5-methyl cytosine (5-hmC) in the Puccinia epigenome indicated the possibility of epigenetic regulation, which merits further investigation.

Monitoring the yellow rust pathogen in Algeria

BGRI 2018 Poster Abstract
Abdelkader Benbelkacem National Agronomic Research Institute of Algeria

Among the many biotic constraints to wheat production in Algeria, rusts and in particular yellow rust (Puccinia striiformis), are among the most prevalent diseases that occur mostly all over the northern part of the country. Yellow rust has become now sporadic due to the exploitation of effective resistant genes in different forms and combinations (from CIMMYT and ICARDA). Earlier, durable resistance was probably due to many genes, such Yr18, Yr9, Yr27 and Yr1.
Yellow rust appeared as epidemic in 2004, over 600 000 ha of bread wheat ; severity exceeded 70%. Yields from affected fields of Hidhab a susceptible variety did not exceed 5.2 q/ha, while resistant cultivars yielded up to 48 q/ha. Monitoring of the pathogen virulence factors and their changes provides basic information for the development of an early warning system. This experiment was carried out in 5 Eastern Algeria locations. 30 lines of a standard set of yellow rust and 14 near-isogenic lines from ICARDA were sown in 2-m rows in 2014 and 2015. According to the results, virulence on Heines Kolben (Yr2), Kalyansona (Yr2), Lee (Yr7), Avocet R (YrA), Federation*4/Kavkaz (Yr9), Yr6/6*Avocet ?S?, Yr7/6*Avocet ?S?, Yr9/6*Avocet “S”, Yr17/6*Avocet “S”, TP1295 (Yr25) and YrSU was common during those two seasons. The frequency of virulence on plants with Yr2, Yr6, Yr7, Yr9 or YrA and Yr27 was up to 80%. No virulence was observed on plants with Yr1, Yr3, Yr4, Yr5, Yr8, Yr10, Yr15 and Yr18 genes. This material was extensively used in our breeding programs and several new cultivars are in the on farm trials where a participatory selection approach is used. All resistant and performing new varieties are being spread for replacement of most old susceptible ones.

Detection of rust resistance in selected Zimbabwean and ICARDA bread wheat (Triticum aestivum L.) germplasm using conventional and molecular techniques

BGRI 2018 Poster Abstract
Bruce Mutari Crop Breeding Institute
Sripada Udupa, Charles Mutengwa, Peter Mavindidze

Host resistance is the most effective and economical method to minimize yield losses caused by rusts. The aim of this study was to detect the presence of resistance in 75 wheat genotypes. The presence of the genes viz. Sr2, Sr24, Lr34, Lr37, Lr46 and Lr68 was investigated using simple sequence repeat and sequence tagged site markers. Quantitative aspects of resistance to leaf rust were assessed through infection response (IR), disease severity (DS), coefficient of infection (CI), disease incidence (DI), leaf tip necrosis (Ltn) and area under disease progress curve (AUDPC) under natural epidemics. Highly significant (p <0.001) differences were observed among the genotypes for CI, DI, AUDPC and relative AUDPC (rAUDPC). Twenty genotypes exhibited high levels of adult plant resistance, recording CI less than 20% and AUDPC less than 300%, with moderately susceptible to susceptible reactions. The most frequently occurring gene was Lr46 (21%), followed by Lr68 (20%), Lr34 (19%) andLr37 (11%). The stem rust resistance gene Sr24 was absent in all the genotypes. Selection for Lr34 and Lr46 based on Ltn alone can sometimes be misleading because of its variable expression in different genetic backgrounds.

Building upon past successes for a continued impact on production and food security through breeding high yielding climate change resilient durum wheat varieties

BGRI 2018 Poster Abstract
Mohamed Salah Gharbi National Institute of Agriculture Research, Tunisia

Meeting food security challenges is a high priority in many developing countries. North African countries are among those with the highest per capita wheat consumption in the world and chronic grain deficits. Climate change scenarios predict decrease of rainfall and increase of temperature with negative impact on crop production and hence food security. Along with adoption of modern technologies, breeding higher yielding and more climate change resilient wheat varieties is widely seen as a tool that can sustain past yield gains and food production increases. Durum wheat production in Tunisia greatly benefited from the green revolution ingredients. Continued breeding lead to replacement of the early semi dwarf varieties with higher yielding, better disease resistant and more drought tolerant ones that have positively impacted yield at farmer and national level. Monitoring gains from increased yield potential and resistance to the most damaging foliar diseases, mainly septoria leaf blotch, leaf rust and stripe rust, showed that grain yield of recently released varieties is up to four times that of the tall late maturing landraces grown before the 1970’s and up to 2.5 times that of varieties of the early years of the green revolution. Chlorophyll content, green leaf duration, deeper root development from diverse donors including wild wheat relatives and grain yield are being integrated in the breeding program for the selection of more drought and heat stress tolerant durum cultivars.

Histopathological characterization of R-gene mediated resistance to stripe rust in wheat

BGRI 2018 Poster Abstract
Kamran Saleem Department of Agroecology, Aarhus University, Denmark
Chris Khadgi,S?rensen, Annemarie Fejer, Justesen, Mogens St?vring, Hovm?ller

Wheat yellow (stripe) rust is a recurrent problem throughout the world, and resistant varieties are an efficient means of managing the disease. Therefore, characterization of diverse sources of resistance is of prime importance for wheat breeding. The objective of the study was to investigate variation in host response in incompatible interactions conferred by different R-genes. Epifluorescence and confocal microscopic methods were utilized for histopathological investigation of six yellow rust R-genes (Yr1, Yr5, Yr6, Yr15, Yr17 and Yr27) in Avocet S background, with Avocet S as the control. Fungal colony size and area of hypersensitive response (HR) were assessed for each interaction at 4, 8 and 16 days post inoculation (dpi). The pattern for Avocet Yr15 was distinct, because HR arrested the pathogen very early and rapidly restricted pathogen growth. Avocet Yr1 and Avocet Yr5 showed a less rapid HR and restriction of pathogen growth, but most colonies were completely surrounded by HR at 8 and 16 dpi. In Avocet Yr6 the size of colonies and the extent of HR were highly variable with continuous change up to 16 dpi. More extensive pathogen growth was observed in Avocet Yr17 and Avocet Yr27, where HR induction was delayed, resulting in large intermingled colonies at 16 dpi. All interactions were clearly different from the susceptible control. Thus each R-gene produced a different temporal and spatial distribution of fungal colonies and HR response. Colony size distributions and HR response patterns are potential parameters for characterization of host resistances with different modes of action in wheat against Pst. The results also expand our comprehension of host resistance in wheat against P. striiformis.

Harnessing the predictive power of epidemiological modelling for wheat yellow rust disease

BGRI 2018 Poster Abstract
Vanessa Bueno-Sancho John Innes Centre
Christopher,Judge, Francesca, Minter, Nik, Cunniffe, Richard, Morris, Diane, Saunders

Wheat yellow rust is a disease caused by the fungus Puccinia striiformis f. sp tritici (PST) that is a significant threat to wheat production worldwide. Recently, a novel approach called “Field Pathogenomics” was developed that allows acquisition of genotypic data from field samples of PST-infected wheat. This has enabled us to study the re-emergence of this pathogen in the UK and understand the different races that form the current PST population. However, the dynamics of pathogen transmission and dispersal still remain unknown and understanding this is essential for designing effective surveillance. The objective of this project is to develop a spatially-explicit model for the spread of PST that can contribute to better management of the disease and be used as a warning system for wheat yellow rust infection in the UK. The first aim is to study how PST spreads at the field level and determine whether there are differences between PST races in terms of disease dynamics. To this end, a set of markers have been designed that can be used to genotype field-collected isolates and determine which race they belong to. Field trials were also undertaken across the UK using wheat varieties that are known to be susceptible to the disease, with PST-infected wheat samples collected during the 2015-2016 and 2016-2017 seasons. These samples will be genotyped to study the prevalence of different PST races and determine whether PST genotypes identified early in the season are predictive of dominant genotypes found later in the season. Understanding PST dynamics within a field is key to build an epidemiological model that can predict how this disease behaves. This would improve disease management, targeting of chemical sprays and optimize pathogen surveillance.

Occurrence of wheat rusts in Algeria and strategies to reduce crop losses

BGRI 2018 Poster Abstract
Amira Bentounsi University Mentouri of Constantine, Algeria

Wheat is the world’s most widely grown food crop. New races of pathogens frequently overcome current resistant varieties. To address this issue Algeria has strategies for immediate action, medium term protection and long-term research efforts to develop new resistant wheat varieties. Yellow rust is a very important disease of wheat in Algeria where 60% of the wheat crop is grown under cooler high elevation climate conditions (2?C ? 15?C). Crop losses reached 80% during the 2004/2005 epidemics. Strategies adopted to reduce the risk of wheat rust are ongoing yearly surveillance, awareness, and early warning systems to farmers; and breeding and developing new varieties with high yield potential and durable resistance. Several highly resistant varieties (Tiddis, Boumerzoug, Massine, Akhamokh and Yacine) were selected and promoted following seed multiplication and commercial release. They are also widely used in crosses to improve local varieties. The newly released varieties are being distributed to farmers that grow susceptible varieties. This gene deployment will provide a natural barrier between eastern to western Algeria to intercept the major direction of air flow. Fungicide control is now routinely applied soon after rust detection or even preemptively. The level of awareness for wheat rusts across Algeria is now very high. Training among farmers for visual detection is widely promoted by plant protection and extension services. These strategies have been very effective in mitigating the threat of wheat stripe rust such that losses have not exceeded 10% over the last five years.

Assessment of wheat varieties and Aegilops species on yellow rust resistance in Tajikistan

BGRI 2018 Poster Abstract
Firuza Nasyrova IBPPG TAS
Anvar,Jalilov, Zubaida, Kavrakova, Menu, Mamadyusufova, Botirov, Muhiddin

The wild relatives of wheat, the genus Aegilops is of great interest for breeding. Many species of the genus Aegilops are distinguished by such valuable properties as resistance to rust diseases, drought resistance, and salt tolerance.
The evaluation of local wheat varieties on resistance to yellow rust showed that local varieties showed high resistance to the pathogen and were amazed from 0 to 10 %. Evaluation of Aegilops species for resistance to yellow and brown rust, showed that the species Aegilops triunciales showed high resistance to yellow and brown rust, except Ae. triunciales, collected in the Rudaki district and showed moderate resistance to brown rust – 20%. The view of the Aegilops cylindrical collected in the Rudakinsky district showed a moderate resistance to yellow rust and a high resistance to brown rust. View Aegilops tauschii, collected in the Rudakinsky district had a high resistance to yellow and brown rust. Species Aegilops crassa to yellow and brown rust showed a reaction from moderate resistance – 30% to moderate susceptibility – 40%. As a result of the studies to assess the resistance of wheat varieties in Central Tajikistan, the cultivars Jaldak, Safedaki Gorchivin and Viyod, which had high resistance to yellow and brown rust, as well as Pamir and Surkhak varieties, showed moderate resistance.
Distinct varieties of wheat with high and moderate resistance to the pathogen of yellow rust can be used as parental forms for breeding new varieties of wheat. Studies on assessing the resistance of Aegilops species have shown that the species Aegilops triunciales has a high resistance to the pathogen of yellow rust. Species of Aegilops tauschii and Aegilops crassa, collected from the Hissar salt source, had moderate resistance to the pathogen. These species of Aegilops can be used in the selection of new varieties of wheat.

Gender Differences in Adoption of Improved Wheat Variety Technology in Kenya

BGRI 2018 Poster Abstract
ANNE GICHANGI KENYA AGRICULTURAL AND LIVESTOCK RESEARCH ORGANIZATION (KALRO)
Godwin Macharia, Bernice Ngina

Studies have shown that women farmers are worse off than the male counterparts in terms of adoption of improved varietal technology and hence they experience low productivity. This technology adoption gender gap affects agricultural development considering that women in Kenya play a significant role in agriculture and food production. The link between gender and adoption is likely to vary across cultures and over time. The hypothesis of significant gender differences in access to and use of productive resources and adoption of improved wheat varieties was tested. Based on bivariate analysis, significant differences in access and use of productive resources between men and women farmers were observed. Men were more likely to access credit, extension services, own and cultivate more lands compared to women. Similarly, women in female-headed households were less likely to access the productive resources compared to women in male-headed households. The factors that affect adoption of improved wheat varieties among smallholder farmers were analysed with a specific focus on women. In contrast to the conventional model of using gender of the household head, gender and plot levels analyses were conducted. The results show that the gender of the field owner had a negative effect on adoption of improved wheat varieties. This indicates that, men were more likely to adopt improved wheat varieties, compared to women farmers. Moreover, the level of education of the household head, household size, and access to credit and extension services were observed to significantly increase the likelihood of farmers adopting improved wheat varieties. In the same framework, female farmers in male-headed households who had access to credit were more likely to adopt improved wheat varieties while there was greater probability of adoption of improved wheat varieties among female farmers in female-headed households who had access to agriculture extension and belonged to a farmer organization

Genomic scan in durum wheat reveals regions controlling adaptation to the heat-prone conditions of the Senegal River

BGRI 2018 Poster Abstract
Amadou Tidiane Sall ICARDA
Filippo,Bassi, Rodomiro, Ortiz, Ibrahima, Ndoye, AbdelKarim, Filali-Maltouf, Bouchra, Belkadi, Miloudi, Nachit, Michel, Baum, Hafssa, Kabbaj, Habibou, Gueye, Madiama, Cisse

Wheat is a major food crop in West Africa, but its production is significantly affected by severe heat. Unfortunately, these types of high temperatures are also becoming frequent in other regions where wheat is commonly grown. In an attempt to improve durum wheat tolerance to heat, a collection of 287 elite breeding lines, including several from both ICARDA and CIMMYT, was assessed for response to heat stress in two irrigated sites along the Senegal River: Fanaye, Senegal and Kaedi, Mauritania during 2014-2015, and 2015-2016 winter seasons. The maximum recorded grain yield was 5t ha-1, which was achieved after just 90 days from sowing to harvesting. Phenological traits (heading, maturity and grain filling period) and yield components (1000-kernel weight, spike density and biomass) had also large phenotypic variation and a significant effect on grain yield performance. This panel was genotyped by 35K Axiom to generate 8,173 polymorphic SNPs. Genomic scans identified a total of 34 significant association between single nucleotide polymorphisms (SNPs) and traits across the four environments, including 15 related to phenological adaptation, 12 controlling grain yield components, and seven linked to grain yield per se. The identification of these genomic regions can now be used to design targeted crosses to pyramid heat tolerance quantitative trait loci (QTL), while the SNPs underlying these QTL can be deployed to accelerate selection process facilitated by DNA-aided breeding.

Resistance to race TKTTF of Puccinia graminis f. sp. tritici with virulence to SrTmp gene in Ethiopian bread wheat lines

BGRI 2018 Poster Abstract
Worku Bulbula Ethiopian Institute of Agricultural Research
Ashenafi Gemechu, Habtamu Tesfaye, Zerihun Tadesse, Habtemariam Zegeye, Netsanet Bacha, Ayele Badebo, Bekele Abeyo, Pablo Olivera, Matthew, Rouse

Puccinia graminis f. sp. tritici (Pgt) is the major wheat production constraint in Ethiopia causing recurrent epidemics that resulted in the withdrawal of widely grown wheat cultivars from production. Among the current Pgt races detected in Ethiopia, TKTTF is the most frequent and has caused a severe epidemic in the south wheat growing regions (Bale and Arsi) after its first detection in 2012. Therefore, to avert the current situation, identifying sources of resistance to race TKTTF in breeding germplasm is a top priority to the National Wheat Breeding Program. Hence, 82 promising bread wheat lines including five check cultivars were evaluated in Debre Zeit in a TKTTF single race nursery for three consecutive seasons, 2014-2016. Ethiopian bread wheat cultivar Digalu was used as a spreader row and was inoculated using a single isolate of race TKTTF at different growth stages. The nursery was bounded by oat to reduce interference with any other stem rust race. The 82 lines were tested in the greenhouse at Cereal Disease Laboratory and were also tested with known diagnostic molecular markers. Twenty-nine lines displayed low levels of terminal stem rust severity in the field and low coefficient of infections. Fourty-one lines were resistant to race TKTTF at the seedling stage. Bread wheat lines resistant to TKTTF are valuable sources of resistance that can be deployed in wheat growing regions of Ethiopia prone to stem rust.

Emerging private sector involvement in wheat seed research and production in India

BGRI 2018 Poster Abstract
Venugopal Chintada Sathguru Management Consultants
Kanan,Vijayaraghavan, Vijay, Paranjape, Richa, Kapur, Vignesh, Vilayanur Jayaraman, , , , , , , , , , , , , , , , , , , , , ,

Wheat is one of the most important food crops of the world. India is the second largest producer of wheat, currently producing 95 million tons from about 30 million hectares. Looking ahead to 2050, India needs to constantly increase production to about 150 million tons, to meet the rising population and demand. With area under cultivation having no room for growth, productivity will be the main pillar for growing production. Currently India?s yield of 3.1 t/ha has plenty room for growth as compared to the world leaders such as France (7.5 t/ha), Germany (7.3 t/ha) and UK (6.6 t/ha). Wheat productivity depends on multiple factors, seed being one of the most important.
The current operating environment is characterized by wheat R&D in the country conducted by public institutes, but there are clear signs of an emerging private sector involvement. The government promoting Inter-institutional linkages by way of associating private players in research and seed production.
This study evaluates and reflects on the current situation of the wheat seed sector in India – from research, variety/hybrid development, seed production, indent to distribution, the players involved, the challenges therein, upcoming technologies and the way forward.

Mining sources of resistance to stripe rust in bread and durum wheat landraces from ICARDA genebank collection

BGRI 2018 Poster Abstract
Kumarse Nazari Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), ICARDA, Menemen, Izmir, Turkey
Muhammad Massub Tehseen, Ezgi Kurtulus, Maha Al Ahmed, Ahmed Amri, Mariana Yazbek, Ali Shehadeh

In 2016 the bread wheat (BW) and durum wheat (DW) landrace accessions were evaluated against PstS2 and in 2017 against a mixture of PstS2 and warrior race in field inoculations at Izmir precision stripe rust phenotyping platform. Inoculation was carried out three times during seedling, tillering and booting stages using mixture of fresh spore and talcum powder. Adult-plant responses of tested accessions were recorded according to 0-9 scale once the flag leaf of the susceptible cultivar became fully susceptible. During 2016, out of 3319 BW accessions, 1135 (36%), 871 (28%) and 1133 (36%) were found resistant (1-3 scale), moderately resistant (4-6), and susceptible (7-9) to PstS2, respectively. Amongst the resistant accessions in 2016, 1043 (33%) remained resistant while 786 (25%) showed moderate resistant and 1310 (42%) became susceptible. In 2017, 43% of moderately resistant accessions showed susceptibility to warrior race and 57% remained resistant to moderately resistant. Within the susceptible accessions to PstS2 race in 2016, 22% showed resistance to the warrior race and the remaining were susceptible. In case of DW in 2016, 76% (553) of the accessions were resistant to PstS2, 23% (163) were moderately resistant and only 1% (7) were found susceptible. In 2017, 329 (46%) of the resistant accessions were found resistant, whereas 289 (40%) and 105 (15%) showed moderately resistance and susceptible reaction to Warrior race, respectively. The present data indicated that BW landraces were generally more susceptible to stripe rust than DWs. Susceptibility of both BW and DW accessions to Warrior race indicated that most likely some of the uncharacterized resistance genes which conferred resistance to PstS2 were ineffective against the warrior race. Sources of resistance to both races were identified in both BW and DW. Genetic architecture of identified sources of resistance in present study requires further investigations.

Progress in breeding for biofortified wheat and identification of genomic regions for enhanced grain zinc and iron in wheat

BGRI 2018 Poster Abstract
Velu Govindan CIMMYT
Leonardo,Crespo-Hererra, Julio, Huerta, Ravi, Singh

Malnutrition affects more than 2 billion people across the globe, particularly zinc and iron deficiency causes major health problem in developing world. The biofortified staple food crops such as wheat, is an important channel to contribute to the hidden hunger problem in low income countries. Breeding for enhanced zinc concentration in wheat was initiated by crossing high zinc sources identified among synthetic wheats, T. dicoccum, T. spelta and landraces. These crosses have resulted in wheat varieties with competitive yields and enhanced grain zinc were adapted by farmers in South Asia. CIMMYT-derived early-maturity wheat cultivar ‘Zinc-Shakti’ with about 40% increased zinc (+14 ppm), is now grown in eastern India through public-private partners. The two CIMMYT-derived biofortified varieties: ‘WB2’ and ‘HPBW01’ released in 2016 for northwestern plains zone of India. In Pakistan, ‘Zincol’ was released in 2016. The first high zinc wheat variety (Bari-Gom 33) with better resistance to wheat blast have been released in Bangladesh for commercial cultivation in 2017. Targeted crosses with increased population sizes were used to obtain superior progeny lines that have high zinc levels in combination with other essential traits. This has resulted in the incorporation of several novel alleles for grain zinc and iron in elite, high-yielding germplasm. High zinc and iron are under quantitative genetic control and further progress is possible as multiple QTL are pyramided in high yielding wheats. High-throughput, non-destructive phenotyping for grain zinc and iron using the X-ray fluorescence (XRF) analysis has facilitated the selection dramatically. Gene discovery and mapping studies leading to the utilization of markers to further improve the breeding efficiency. Rapid adoption of high zinc wheat varieties in South Asia and beyond is expected with the second wave of high zinc wheat lines with superior yield, heat and drought tolerance and resistance to rusts and other foliar diseases.

Reaction of Bhutanese wheat cultivars and differential lines to rust diseases at mid and low altitudes in Bhutan

BGRI 2018 Poster Abstract
Sangay Chophel National Plant Protection Center
Namgay Om, Thinlay, Ugyen Yangchen

Wheat rusts are one of the important diseases that limit the production and downgrade wheat quality. Three rust diseases of wheat are stem rust caused by Puccinia graminis Pers. f. sp. tritici Eriks., stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Eriks., and leaf rust caused by Puccinia triticina Eriks. This study was conducted to determine the reaction of wheat varieties to wheat rusts at different altitudes. Field experiments were conducted from December 2016 to March 2017 at Mendagang (27.5886°N, 89.8711°E, 1332 masl), Punakha Dzongkhag (district) for mid altitude and at Agriculture Research and Development Center (ARDC), Samtenling (26.9058°N, 90.4308°E, 378 masl), Sarpang Dzongkhag, Bhutan for low altitude. The experiment followed a RCBD with 15 treatments comprising of three Bhutanese released varieties, eight SAARC varieties, and four ICARDA varieties. Each treatment was replicated three times. Assessment of disease incidence and severity were performed three times starting from tillering to ripening stage, approximately at 60, 90 and 120 days after sowing (DAS). Disease severity was determined following the modified Cobb’s disease rating scale. Of the 15 varieties, only 11 germinated in both the sites. Among the three wheat rust diseases, only leaf rust was observed in both sites. Leaf rust incidences ranged from 2.5 to 10% and 2.5 to 16% at mid and low altitudes respectively. Disease severity of 5 to 20%, corresponding to field response of immune (5O) to moderately resistant (20MR), was observed at mid altitude, while 5 to 100%, with immune (5O) to susceptible (100S), was observed at low altitude. There was a significant difference in disease incidence by site (p=.038) but not in disease severity (p=.129). The variety, ICARDA 1, with 100% severity was highly susceptible (100S) to leaf rust at low altitude while Bajosokha Kaa remained immune (5O) in both the sites. The results indicate that leaf rust can occur in both low and mid altitudes; however selection of suitable varieties requires more extensive studies.

Puccinia striiformis population structure in Nepal and Bhutan in comparison with Himalayan population from Pakistan

BGRI 2018 Poster Abstract
Sidra Nazir The University of Agriculture, Peshawar, Pakistan
Muhammad,Khan, Sangay, Tshewang, Sarala, Lohani, David, Hodson, Muhammad, Imtiaz, Sajid, Ali, , , , , , , , , , , , , , , , , ,

The Himalayan region of Pakistan and China has been shown to be the centre of diversity of Puccinia striiformis, however, little is known about the Eastern part of the Himalayas. We studied the genetic structure of P. striiformis from Nepal and Bhutan in comparison with Pakistan through microsatellite genotyping of 66 isolates from Nepal (35 isolates) and Bhutan (31 isolates) collected during 2015 and 2016. Genetic analyses revealed a recombinant and highly diverse population structure in Bhutan and Nepal. A high level of genotypic diversity was observed for both Bhutan (0.92) and Nepal (0.67) with the detection of 53 distinct multilocus genotypes (MLGs) in the overall population; 28 for Bhutan and 27 for Nepal. Mean number of alleles per locus was higher in Bhutan (3.33) than Nepal (3.11), while the gene diversity was higher in Nepal (0.4279) than Bhutan (0.3552). A non-significant difference between the observed and the expected heterozygosity in both populations further confirmed the recombinant structure. Analyses of population subdivision revealed a low divergence between Nepal and Bhutan (FST=0.1009), along with the detection of certain common MLGs in both populations. The overall population was clearly divided into six genetic groups, with no geographical structure, confirmed by the distribution of multilocus genotypes over two countries, suggesting a potential role of migration. Comparison with the Pakistani P. striiformis population suggested a high genotypic diversity in Nepal (0.933) and Bhutan (0.959), though lower than the previously reported from Himalayan region of Pakistan (Mansehra; 0.997). The overall high diversity and recombination signature suggested the potential role of recombination in the eastern Himalayan region (Nepal and Bhutan), which needs to be considered during host resistance deployment and in the context of aerial dispersal of the pathogen.

Progress in breeding for biofortified wheat and identification of genomic regions for enhanced grain zinc and iron in wheat

BGRI 2018 Poster Abstract
Velu Govindan CIMMYT
Leonardo,Crespo-Hererra, Julio, Huerta, Ravi, Singh

Malnutrition affects more than 2 billion people across the globe, particularly zinc and iron deficiency causes major health problem in developing world. The biofortified staple food crops such as wheat, is an important channel to contribute to the hidden hunger problem in low income countries. Breeding for enhanced zinc concentration in wheat was initiated by crossing high zinc sources identified among synthetic wheats, T. dicoccum, T. spelta and landraces. These crosses have resulted in wheat varieties with competitive yields and enhanced grain zinc were adapted by farmers in South Asia. CIMMYT-derived early-maturity wheat cultivar ‘Zinc-Shakti’ with about 40% increased zinc (+14 ppm), is now grown in eastern India through public-private partners. The two CIMMYT-derived biofortified varieties: ‘WB2’ and ‘HPBW01’ released in 2016 for northwestern plains zone of India. In Pakistan, ‘Zincol’ was released in 2016. The first high zinc wheat variety (Bari-Gom 33) with better resistance to wheat blast have been released in Bangladesh for commercial cultivation in 2017. Targeted crosses with increased population sizes were used to obtain superior progeny lines that have high zinc levels in combination with other essential traits. This has resulted in the incorporation of several novel alleles for grain zinc and iron in elite, high-yielding germplasm. High zinc and iron are under quantitative genetic control and further progress is possible as multiple QTL are pyramided in high yielding wheats. High-throughput, non-destructive phenotyping for grain zinc and iron using the X-ray fluorescence (XRF) analysis has facilitated the selection dramatically. Gene discovery and mapping studies leading to the utilization of markers to further improve the breeding efficiency. Rapid adoption of high zinc wheat varieties in South Asia and beyond is expected with the second wave of high zinc wheat lines with superior yield, heat and drought tolerance and resistance to rusts and other foliar diseases.

Two phases of an adult plant resistance response in wheat to Puccinia graminis f. sp. tritici

BGRI 2018 Poster Abstract
Howard Castelyn University of the Free State, South Africa
Nelzo Ereful, Botma Visser, Lesley Boyd, Zakkie Pretorius

Adult plant resistance (APR) to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is often conferred by multiple minor genes and has the potential to be durable. A preceding project identified two Kenyan wheat lines (W1406 and W6979) from the Genome Resource Unit (Norwich, UK) that exhibit APR to Pgt. The aim of this study was to investigate the APR response to Pgt race PTKST in W1406 and W6979 compared to 37-07, a susceptible control line. Histological investigation of inoculated flag leaf sheaths indicated a significant and quantifiable decrease in Pgt colony size in the APR lines at 120 hours post inoculation (hpi). Molecular analysis supported the observed fungal biomass decrease in the APR lines at 120 hpi. RNAseq analysis identified 169 transcripts differentially expressed in W1406 and 166 transcripts in W6979 when comparing 24 and 72 hpi to 0 hpi. In W1406 transcripts encoding putative pectinesterases, lipid-transfer proteins and leucine-rich repeat-like proteins were induced at 72 hpi. In W6979 only a corresponding putative pectinesterase encoding transcript was identified. Although the induced defence response in the two APR lines exhibited some dissimilarity, it potentially involves cell wall modification in both lines. Two independent sets of peroxidases were induced at 24 and 72 hpi in both lines, suggesting independent signalling events. Expression analysis suggests the occurrence of two phases of gene expression, one at 24 hpi and another at 72 hpi; the latter seeming to correspond to the inhibition of Pgt growth, manifesting as the observed APR phenotype.

Marker and haplotype-based association mapping and genomic prediction to unravel the complex genetic architecture of grain yield and yield stability in spring bread wheat

BGRI 2018 Poster Abstract
Deepmala Sehgal CIMMYT
Umesh Rosyara, Suchismita Mondal, Ravi Singh, Susanne Dreisigacker

Grain yield is the most important economic trait in wheat breeding. The detailed understanding of the genetic architecture of grain yield is crucial and the determining factor to optimize genomics-assisted selection strategies in wheat. First, we performed a marker and haplotype-based genome-wide association study (GWAS) for grain yield (GY) and yield stability coefficient (Pi) on 4,302 advanced breeding lines from five CIMMYT international bread wheat trails grown in multiple (optimally irrigated and stress) environments. All lines were genotyped using genotyping-by-sequencing. A haplotype map was built based on linkage disequilibrium between markers. Twenty-nine markers and 16 haplotypes were associated with GY and Pi across two and three germplasm trials with allelic effects ranging from 2 to 11% across environments. Secondly, we performed genomic prediction, testing eight different prediction models incorporating single markers (base model), haplotypes, epistatic interactions, and significant markers/haplotypes identified in GWAS. Initial results show that by including haplotypes and epistatic interactions among haplotypes (main effect and genome-wide), prediction accuracies range between 0.33-0.49 for GY, a 3 to 22.5% improvement over the base model. Despite the identification of significant marker/haplotype trait associations across traits and environments in GWAS, accounting for these markers in genomic prediction does not improve the prediction models. Our results suggest that the haplotype-based approach can increase prediction ability, but that the knowledge of the genetic architecture of grain yield might not have significant consequence on genomic-assisted selection.

Effect of Stem Rust (Puccinia graminis f.sp.tritici) on Quality of Durum Wheat (Triticum tu gidum) in Ethiopia

BGRI 2018 Poster Abstract
Ashenafi Degete Ethiopian Institute of Agricultural Research, Debre Zeit Research Centre
Alemayehu,Chala

Stem rust caused by Puccinia graminis f.sp. tritici is one of the major biotic constraints of wheat production. The disease may cause substantial quantitative and qualitative yield losses. However, much of the work in Ethiopia on this pathosystem focuses on quantitative yield loss and qualitative losses are often overlooked. Hence the current research was designed with the objectives to evaluate the effect of stem rust on physical and chemical quality of durum wheat and assess the relationships between disease intensity and quality parameters. For this purpose, a factorial field experiment was conducted at Debre Zeit Agricultural Research Centre during main and off seasons of 2016/17. The experiment involved six durum wheat varieties (Denbi, Hitosa, Tob.66, Mukiye, Ude and Mengudo) with different level of resistance to stem rust, and three Tilt spray schedules of Tilt?250 E.C at 7, 14 and 21 days. The experiment was laid out in randomized complete block design in factorial arrangements with three replications and untreated checks were included for comparison purpose. Results revealed significant variations in disease parameters and crop performance among spray schedules, wheat varieties and their interactions. Stem rust severity was the lowest on moderately susceptible and susceptible varieties treated with the Tilt at 7th day schedule. The highest stem rust severity (46.67%) was recorded on variety Hitosa without Tilt spray. Without Tilt treatment Denbi variety accounts protein content of 15.67% which is a false protein. At 7th day spray schedule this variety showed 12.90 % of grain protein content which is normal. There was a significant positive correlation between grain protein and stem rust severity (0.31**). There was significant negative relationships between terminal stem rust severity and thousand kernel weight, hectolitre weight, seed size and yield during off and main seasons were resulted, respectively.

Molecular marker assisted gene pyramiding for durable rust resistance in wheat

BGRI 2018 Poster Abstract
Shahid Nazir Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute (AARI), Faisalabad-Pakistan
Imran Habib, Sajid-ur-Rahman, Muuhammad Waqas Jamil, Muhammad Zaffar Iqbal

Rust diseases are among the most important affecting wheat because they are responsible for a significant yield reduction globally. Different types of conventional breeding approaches are currently underway to protect wheat from these diseases. The involvement of molecular genetics and biotechnology tools in conventional plant breeding sets new directions to develop crop varieties with desired traits more efficiently and accurately. An array of molecular markers linked to rust resistant genes and dense molecular genetic maps are now available for use. Marker assisted selection (MAS) is now a routine activity in various crops especially for agronomic traits that are otherwise difficult to tag like resistance to pathogens, insects, nematodes etc. Gene pyramiding involves the stacking of many genes leading to real-time expression of all genes in single variety to develop durable resistance. This method is gaining significant popularity as it would enhance the efficiency of conventional breeding methods and precise development of broad spectrum resistant capabilities. Keeping in view the significance of MAS, rust resistant wheat parental lines were selected and molecular information was tagged using gene linked markers through PCR. Conventional breeding plane was designed on the basis of molecular data and maximum crosses were made between high yielding susceptible and resistant wheat genotypes. Molecular screening and other yield parameters were keenly noted on each stage of segregating population. Three rust resistant genes i.e. Lr-34/Yr-18, Lr-46/Yr-29 and Lr-19 were successfully combined in three cross combinations. Twenty crosses were found positive for two resistant genes i.e. Lr-46/Yr-29 and Lr-19, Moreover, one cross was positive for Lr-34/Yr-18 and Lr-46/Yr-29, and one was positive for Lr-34/Yr-18 and Lr-19. Introduction of more genes is also continued to develop superior resistance against a wide range of rust pathogen in wheat.

Host-induced gene silencing of the mitogen-activated protein kinase PsFUZ7 confers stable resistance to wheat stripe rust

BGRI 2018 Poster Abstract
Jun Guo Northwest A&F University
Xiaoguo Zhu, Zhensheng Kang

RNA interference (RNAi) is a powerful genetic tool to accelerate research in plant biotechnology and to control biotic stresses by manipulating target gene expression. However, the potential of RNAi in wheat to efficiently and durably control the devastating stripe rust fungus Puccinia striiformis f. sp. tritici (Pst), remained largely under explored, so far. To address this issue, we generated transgenic wheat lines expressing double-stranded RNA targeting PsFUZ7 transcripts of Pst. We analyzed expression of PsFUZ7 and related genes, and resistance traits of these transgenic wheat lines. We show that PsFUZ7 is an important pathogenicity factor that regulates infection and development of Pst. A PsFUZ7 RNAi construct stably expressed in two independent transgenic lines of wheat confers strong resistance to Pst. Pst hyphal development is strongly restricted, and necrosis of cells in plant resistance responses was induced significantly. We conclude that trafficking of RNA molecules from wheat plants to Pst may lead to a complex molecular dialogue between wheat and the rust pathogen. Moreover, we confirm the RNAi-based crop protection approaches can be used as a novel control strategy against rust pathogens in wheat.

Durum wheat genome reveals the signature of 10,000 years of selection

BGRI 2018 Poster Abstract
Luigi Cattivelli CREA Research Centre for Genomics and Bioinformatics
,International Durum Wheat Genome Sequencing Consortium

The domestication of wild emmer wheat ~10,000 years ago by early agrarian societies have led to the selection of domesticated emmer and subsequently of durum wheat through a process of selection for non-brittle rachis and free-threshing forms. Durum wheat and became established as a prominent crop only ~1,500-2,000 years ago. We have completed the 10.45 Gb assembly of the 14 chromosomes of the modern DW cultivar ‘Svevo’ and provides, via comparison with the wild emmer assembly, an account of the genome-wide modifications imposed by 10,000 years of selection and breeding on the genome architecture of tetraploid wheat. A number of regions that were under selection during the domestication of wild emmer or the subsequent selection of durum wheat have been identified. Furthermore, we have projected on the durum wheat genome about 1,500 QTLs for morphological phenological and quality traits, grain yield components and disease resistance reported from published biparental mapping or GWAS. NBS-LRR genes are prominently involved in signaling and plant disease resistance. The durum wheat genome contains more than 66,000 genes and among them we annotated about 1,500 complete NBS-LRR genes. A similar number was found in the wild emmer genomes, nevertheless the comparison of the two genomes has identified some NBS-LRR genes specific for durum wheat. The availability of the complete genome of durum wheat will speed up the identification and the isolation of new resistance genes as well as the breeding for high-yielding and more resilient cultivars.