

DEGLI STUDI firenze

ASSOCIATION MAPPING FOR STRIPE RUST (PUCCINIASTRIIFORMIS F. SP. TRITICI) IN BREAD WHEAT

Elias Shewabez Yassin – elias.shewaez@gmail.com

markers identified from 245 wheat

lines to identify the genetic basis of

Materials and methods

stripe rust resistance.

Study Area

Field screening was conducted during 2018 and 2019 main cropping seasons at Kulumsa Agricultural Research Center (KARC), in Ethiopia

Plant Material

This research used a panel of 245 elite spring wheat breeding lines (T. aestivum) from International Center for Agricultural Research in Dry Areas (ICARDA).

Genetic Diversity

Genetic diversity was discovered based on polymorphic information content (PIC), heterozygosity, and Nei's gene diversity using the whole set of SNP markers from PowerMarker 3.25 software (K. Liu & Muse, 2005).

Genome-Wide Association

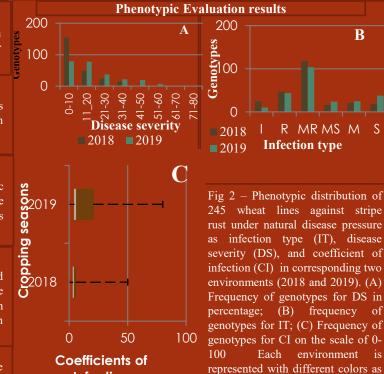
The mixed linear model (MLM) in TASSEL 5.2 software was used to examine marker-trait association (MTAs) between BLUEs value of CI and SNP genotypic data. Mixed linear model in which genetic markers were used as a covariance matrix between individuals along with population structure and kinship matrix

MTAs were declared significant at a threshold value of $-log_{1o}(p) \ge 2.5$ (corresponding $p \ value \le 0.05$).

Genotypic Analysis

Figure 2- A dendrogram illustrating the clusters of wheat lines based on Nei's genetic distance. The lines were color-coded with STRUCTURE probability distribution.




Fig 3 – Structure clustering and principal components of 245 wheat lines based on 9523 SNP markers. K_probability of population group based on K=2; a

Objectives

This research is aimed to find the novel loci responsible for Pst resistance on spring bread wheat germplasm to contribute substantial input for durable rust-resistant variety development

- To evaluate bread wheat varieties for their resistance against yellow rust under natural disease pressure.
- To identify and map QTLs associated with yellow rust through genome-wide association mapping.
 - To assess the nature and extent of genetic diversity of globally collected bread wheat germplasms.

Infection

Table 1-Summary of the MTAs detected in the 245 wheat

indicated by the color legend.

breeding lines for stripe rust resistance						
	Name of QTLs	Position	P-value	R2	Yr/QTL	Reference
Name of QTLs Potenti al candida te for represe nting alleles of the same genes.	EWYY1B.3 EWYY2B.2 EWYY2B.2 EWYY2B.3 EWYY3B EWYY4B.1 EWYY4B.2 EWYY7B.1 EWYY7B.1 EWYY7B.1	60.62 139.53 141.48 169.3 5.79 61.84- 75.65 71.37- 75.65 126.35- 126.35- 129.24 63.09- 71.33 73.39 - 73.79	2.978811 2.92811 8 3.807739 2.844664 2.638272 2.779892 3.929556 2.551294 4.404724 4.003423	5.768 4.424 7.457 5.522 5.129 5.377 7.683 5.527 7.088 7.733	Yr24/26, Yr64,Yr6 5 <i>Lr46/Yr2</i> 9 Yr43, Yr53 Yr4, Yr57, Yr50 Yr50 Yr62 YrExp2 Yr39 Yr39	Cheng et al., 2014 Rosewarne et al. 2012 Xu et al., 2013 Wheat Catalogue Suenaga et al., 2003 Liu et al., 2013 Lu et al., 2014 Wheat Catalogue Lin & Chen 2000 7
Potenti al candida te for represe nting alleles of the same QTLs for <i>Pst</i> resistan ce	EWYY1B.1 EWYY1B.2 EWYY2B.1 EWYY6B.2 EWYY7B.4	27.62 43.86 76.7- 80.77 73.24 133.59	3.340569 2.616185 3.280868 3.03323 2.821023	5.163 5.056 5.716 5.500 5.496	QYr.cau- IBS_AQ 24788-53 QYr.cau- IBS_AQ 24788-53 QYr.ucw- 2B_UC11 10 QYr.ucw- 6B QYr-7B_ Tiritea	Lukaszewski, 200 0 Quan et al., 2013 Lowe et al., 2011 Maccaferri et al., 2015 Imtiaz et al., 2004
Potenti ally novel signific ant QTLs identifi ed in this study	EWYY1B.4 EWYY4A EWYY4A EWYY5A.1 EWYY5A.2 EWYY5B.2 EWYY5B.2 EWYY6B.1 EWYY7B.3	95.12 62.81 74.96 67 93.23 176.61 64.08 89.64	2.539102 2.866461 2.500313 2.886057 3.461778 2.809668 3.0 3.249414	5.063 4.294 3.634 5.588 6.745 5.436 5.811 6.311		This study This study This study This Study This Study This study This study This study