Development and characterization of genetic variants in bread wheat for plant architecture, grain texture and grain quality attributes

Sajida Bibi^{1&2}, M. U. Dahot², Sharmeen Tahir ¹and Syed Habib Ahmed Naqvi ²

¹Soil and Environmental Science Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan; ²Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan.

ABSTRACT Wheat is the most important cereal crop of Pakistan which contributes 10% to the value added in agriculture and 2% to GDP. The objective of this study was to broaden the genetic bases through identification and evaluation of promising wheat mutants with higher yield and better quality. Genetic variability was induced in three wheat varieties Sarsabz, Kiran-95 and TD1 for the development of new ideotypes by gamma rays, EMS and combined treatment. From M₃ generation, 30 promising mutants were selected on the basis of phenotypic variations. These mutants were confirmed through SSR markers in M₄ generation and further characterized for quality traits through PINa-D1, PINb-D1 and waxy gene. As the physical trait grain texture affects the milling and marketing of bread wheat, the mutants were characterized based on their hardness. Among the 30 mutants along with three parents, the grain texture of 20 mutants was categorized as soft, 12 as hard and only one mutant was classified as ultra-hard. Our results showed five types of waxy phenotype (Type 1, 2, 3, 5 and 8) in which five mutants were non-waxy, three were waxy and 19 along with parents were partial waxy. Hardness index was ranged between 56 to 89 indexes. Seed diameter was varied from 2.51 to 2.86 and moisture contents were between 10.13 to 11.70. Highest gluten contents 45 were found in L23 and lowest were found in L8 and L11 (37). Maximum zeleny value of 87.3 was recorded in L12 and 23. Maximum falling number was observed in L5 (729 seconds) and minimum was 425 seconds in mutant L23. In this work new bread wheat ideotypes were developed for the identification of plant architecture and grain quality traits which could play a role in future wheat breeding. This work reports genetic characteristics of grain texture and starch content at gene level that could help in the improvement of modern cultivars for the purpose of milling and value addition to wheat product.

MATERIAL & METHODS

 ${\cal P}$

DNA Extraction and gene specific marker analysis: Isolation of pure DNA is pre-requisite for the molecular marker studies. Fresh young leaves were collected from field at seedling stage from thirty mutants and isolated the DNA by using MATAB method (Bibi et al. 2010) DNA stock of each mutant kept in refrigerator at -20°C. The extracted DNA was quantified as method described by Bibi et al. 2012.

According to the guidelines outlined in AACC (1990), each wheat mutant was evaluated for total protein percentage, moisture content, gluten content, falling number, and Zzelenv (sedimentation value). Protein was also assessed using a grain analyzer. Wheat samples were ground using a laboratory mill 3100 Perton in accordance with the recommended procedure (AACC, 1990).

Figure 4-30 Wheat crop at maturity in My panaration (Rubi 2012-13) et NA Ferm.

Figure 4-9 Early mature multant observed at M₂ peneration (Rubi 2012-13)

Figure 4-13 Mantified a short stature mutant without plaintropic effect to M, generation

Figure 4.13 Canadia variability at maturity in My generation (Rabi 2012-13) at NA Farm

CONCLUSION: Thirty new wheat ideotypes have been generate through mutation breeding. According to results, five types of waxy phenotyp i.e. Type1, 2, 3, 5 and 8 were observed in which five mutants were non-wax

AND ALL DA. AND ALL AND AND ALL AND AL

	8.9m	View	Maker	Discourse	Herdess John	Gluten	Zeleny	FN(Sec)
	н.	9041011	18.9	1.00	81.0	38.000	85.0 48	588.017
	L	8741212	113	177		39.8 000	85.318	575.8000
	н.	804303	19.4	177	<u>n</u>	37.3	85.0 48	554.0 ^{4.56}
	н.	804324	18.4	279	1	38.0 ⁰⁰⁰	86.015	516.89
	L.	804004	10	186	8	38.000	85.318	729.8*
	1. C	854124	812	1.0	29	38.000	84.0**	624.0 ^{cm}
	ι.	858327	114	2.00		38.0 ⁰⁰⁰	86.318	562.0 ⁸³¹
	L.	403124	84	171		41.0 ⁸⁰⁰	86.318	520.0 ⁴⁰
	н.	423324	111	1.00	28	38.000	85.8**	516.89
	н.	40,51240	84	2.09		40.3000	84.0**	561.0 ⁸³
	L.	TCT4834	114	2.75	3	37.3*	84.3**	498.0 [%]
	L.	TCT4822	112	181	28	44.015	87.0*	569.0 ¹²⁶
	L.	NEX1010	84	2.78		39.3000	86.318	560.0 ⁸¹
	н.	8081040	81.2	1.00		40.0	86.0 **	614.0°
	L.	4041218	11.2	187	.00	38.050	85.018	575.80983
	L.	8081247	81.8	2.87		39.0 ^{CDE}	84.018	541.0 50
	L.	ALCO DE	81.2	148		40.0	86.318	671.0*
	н.	823328	112	149	a	37.0 ⁸	84.8**	572.0 ^{10.06}
	L.	8233238	111	2.64		40.3000	86.3**	473.8*
	L.	8233223	8.7	178	24	42.3 480	No.0 ₁₀	717.8*
	н.	8033028	8.7	1.69	.0	41.0 ⁸⁰⁰	16.0 ⁴⁸	591.0 ⁹⁰⁰⁶
	L.	803038	812	2.67		42.0 42.0	86.318	597.0 ⁸
	н.	8023027	8.7	1.78	27	45.0*	87.34	425.07
	н.	8723229	8.4	171	28	42.8 42.0	85.348	532.800
	L.	800008	80	2.98		39.0	84.0**	627.0 ^C
	1. C	80000	80	1.89		39.7000	86.3**	527.8%
	н.	80104	84	2.98	24	39.0	84.8**	563.0***
	L.	8202.0		1.0		38.000	84.0 48	572.0 ^{48.06}
A.	н.	80173244	8.4	1.91	28	39.3000	84.8**	585.0000
u	L	40164	8.9	2.72		37.3*	83.348	545.0 100
NP.	L.	Arraite	8.7	2.81	24	39.300	85.0**	547.0 ⁵⁰⁵
		Kiras W	19.4	1.08	-	45.0*	36.8 ⁴⁸	584.0****
у,	L	THE	112	2.8	1 2	38.300	82.38	542.8%000

State of the second