

Utilization of multi-trait genotype-ideotype distance index (MGIDI) increases expected genetic gains for simultaneous improvement of wheat traits

Zine El Abidine Fellahi¹, Abderrahmane Hannachi², Amar Benmahammed³ ¹University of Bordj Bou Arreridj, Algeria, ²National Agronomic Research Institute of Algeria, ³University of Setif-1, Algeria

INTRODUCTION

Multi-trait-based selection has a great potential to increase genetic gain in wheat (*Triticum aestivum* L.) breeding programs (Fellahi *et al.*, 2020). In this study, the Smith-Hazel classic indexes (SH1 and SH2), the modern ideotype-design index (FAI-BLUP) and the recently proposed multi-trait genotype-ideotype distance index (MGIDI) were compared and used to select superior wheat genotypes for thirteen important agronomic traits with negative and positive desired gains.

MATERIALS AND METHODS

- Plant Materials : 34 local and introduced bread wheat genotypes.
- **Experimental design :** all genotypes were tested in a randomized complete block design with three replications at the Agricultural Experimental Station of the ITGC institute, Setif (Algeria).
- **Traits scoring :** heading date (DVP), canopy temperature (CT), membrane thermostability (MT), chlorophyll content (CC), relative water content (RWC), flag leaf area (FLA), plant height (PH), thousand grain weight (TGW), number of spikes/m² (NS), number of grains/m² (NG), grain yield (GY), biomass (BIO) and harvest index (HI).
- * Statistical analysis : data collected were analyzed using 'metan' package in R software (Olivoto and Nardino, 2020).

RESULTS AND DISCUSSION

✤ Variance components, genetic parameters and correlations :

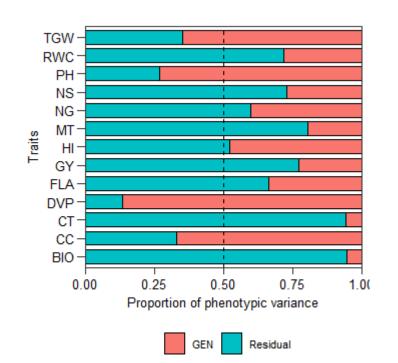


Figure 1: Estimated variance components for the traits evaluated.

Traits	h²	CVg	CV _g /CV _e	p-value	Traits	h²		CVg	CV _g /CV _e	p-value
DVP	0.9	-		2.1e-23			0.85	0		1.2e-10
СТ	0.1	6 1.68	0.25	5.6e-01	NS		0.53	10.75	0.61	9.7e-03
MT	0.4	2 16.85	0.49	6.3e-02	NG		0.67	18.69	0.82	1.4e-04
CC	0.8	6 14.05	1.43	1.5e-11	GY		0.47	12.78	0.54	3.1e-02
RWC	0.5	4 3.03	0.63	7.3e-03	BIO		0.15	4.6	0.24	5.9e-01
FLA	0.6	1 13.37	0.71	1.4e-03	HI		0.73	10.86	0.95	5.5e-06
PH	0.8	9.9	1.65	4.6e-14						

TGW CC $\langle \Phi \rangle$ A P P N O \mathbb{Q} $\Delta \Lambda$ NG 🚺 DI $\mathcal{O}\mathcal{O}$ 0.65 \mathbf{O} FLA O O O D T

Figure 2: Phenotypic (lower diagonal) and genotypic (upper diagonal) correlation between the traits evaluated.

> Table1:Deviance analysis and genetic parameters for wheat traits evaluated.

Selected genotypes, coincidence index and predicted selection gains :

 Table 2: Eigenvalues, explained variance, factorial
loadings after varimax rotation, and communalities obtained in the factor analysis

obtained in the factor analysis.							
Traits	FA1	FA2	FA3	FA4	FA5	h†	
TGW	-0.64	-0.45	0.03	-0.04	-0.24	0.66	
NG	0.89	0.10	0.12	0.41	0.00	0.98	
GY	0.81	-0.10	0.16	0.49	-0.10	0.95	
HI	0.93	-0.06	0.07	-0.09	-0.12	0.90	
СТ	0.13	-0.90	-0.01	-0.15	0.15	0.88	
PH	-0.27	-0.68	0.32	0.39	-0.19	0.83	
DVP	-0.30	-0.26	-0.53	-0.47	-0.14	0.68	
СС	-0.12	-0.01	-0.82	-0.19	0.12	0.73	
RWC	-0.02	-0.20	0.77	-0.18	0.09	0.68	
FLA	0.49	-0.09	0.51	0.33	-0.14	0.64	
NS	0.07	0.30	-0.27	0.64	0.49	0.81	
BIO	0.31	-0.10	0.17	0.88	-0.04	0.91	
MT	-0.09	-0.07	0.02	0.02	0.92	0.87	
Eigenvalues	4.46	2.30	1.51	1.21	1.04		
Variance	34.3	17.7	11.6	9.27	8.02		
Accumulated	34.3	52	63.6	72.8	80.9		

+: Communality, bold values indicate the variables grouped within each factor.

Figure 4: Strengths and weaknesses view of the Figure 5: Genotypes ranking based on the FAI-BLUP index. selected genotypes identified by MGIDI index.

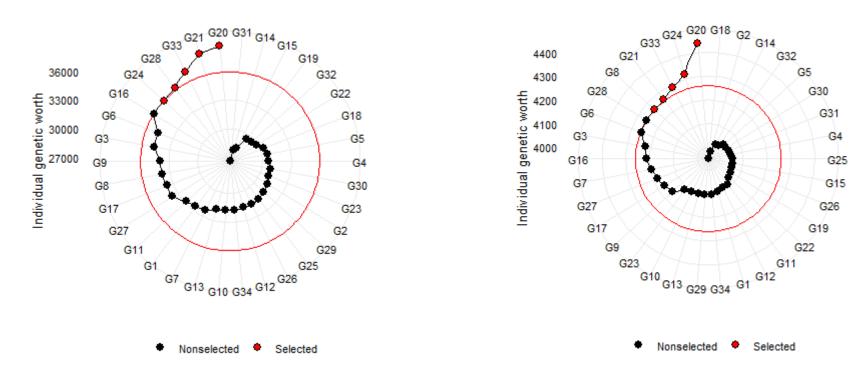


Figure 6: Genotypes ranking based on the SH-1 (left) and SH-2 (right) indexes.

BGRI 2021 Virtual Technical Workshop https://bgri.cornell.edu/

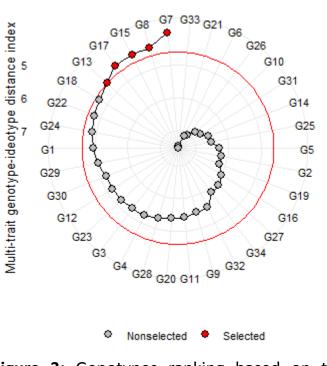
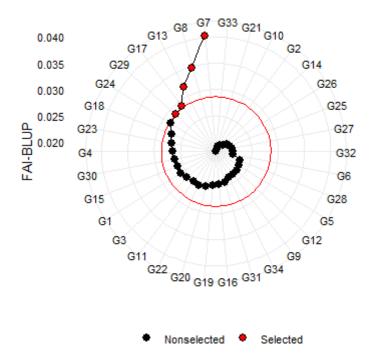



Figure 3: Genotypes ranking based on the MGIDI index.

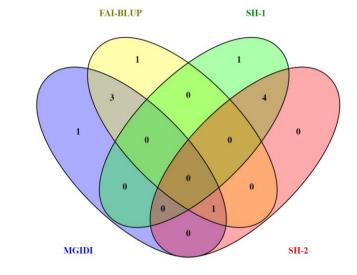


Figure 7: Number of common genotypes between the indexes MGIDI, FAI-BLUP, SH-1 and SH-2 based on coincidence index.

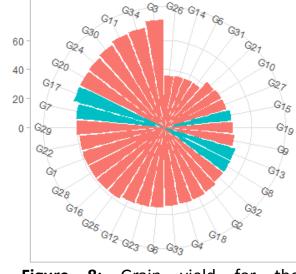


Figure 8: Grain yield for the evaluated genotypes. The selected genotypes by the MGIDI index are highlighted in blue color.

 Table 3: Coincidence index and shared genotypes
for each pair of indexes evaluated. ence Shared genotypes 76.47 G7,G8,G17,G13 -17.65 None 5.88 G8 -17.65 None 5.88 G8 76.47 G20,G21,G33,G24

Index 1	Index 2	Coincide				
MGIDI	FAI-BLUP					
MGIDI	SH-1					
MGIDI	SH-2					
FAI-BLUP	SH-1					
FAI-BLUP	SH-2					
SH-1	SH-2					

Table 4: Predicted genetic gains for the indexes MGIDI, FAI-BLUP, SH-1 and SH-2.

Feeter	Trait	Goal	Constinualus	Genetic gain (%)				
Factor			Genetic value	MGIDI	FAI-BLUP	SH-1	SH-2	
FA1	TGW	Increase	39.95±0.53	0.81	-2.33	-7.12	-2.85	
FA1	NG†	Increase	13727.29±359.74	0.02	3.92	6.89	NA	
FA1	GY†	Increase	54.14±0.81	0.27	1.41	1.25	NA	
FA1	HI	Increase	35.39±0.56	1.3	2.62	7.09	-3.43	
FA2	СТ	Decrease	18.89±0.02	-0.13	-0.09	0.03	0.02	
FA2	PH	Increase	86.05±1.38	6.59	0.14	-2.07	5.12	
FA3	DVP	Decrease	118.48±0.63	-2.2	-1.23	2.43	2.94	
FA3	CC	Increase	33.66±0.75	4.16	4.77	-4.58	-8.46	
FA3	RWC	Increase	88.65±0.34	-0.41	-0.62	-0.19	-0.03	
FA3	FLA	Increase	16.34±0.29	0.4	-0.67	-0.78	1.15	
FA4	NS	Increase	954.71±12.82	1.2	3.05	-0.53	5.7	
FA4	BIO	Increase	152.43±0.46	-0.02	0.04	-0.15	0.39	
FA5	MT	Decrease	32.91±0.62	-2.39	-4.12	2.17	-0.87	
Total (positive)			14.32	12.31	-0.19	-2.41		
Total (negative)			-4.71	-5.44	4.63	2.09		

†: Traits removed from SH-2 due to multicollinearity issues

CONCLUSION

The most efficient selection was obtained by MGIDI index, which outperformed the Smith-Hazel and FAI-BLUP indices with higher desired gains considering all traits simultaneously.

The MGIDI provided negative gains (-2.20% \leq gains \leq -0.07%, a total of -4.71%) for all the three traits that wanted to decrease and positive gains $(-0.41\% \le \text{gains} \le +6.59\%, \text{ a total of } +14.32\%)$ for eight of the ten traits that wanted to increase.

MGIDI can greatly increase the efficiency of selection for multiple traits in wheat breeding programs.

REFERENCES

Fellahi, Z., Hannachi, A., & Bouzerzour, H. (2020). Expected genetic gains from mono trait and index-based selection in advanced bread wheat (Triticum aestivum L.) populations. Revista Facultad Nacional de Agronomía, 73(2), 9131-9141.

Olivoto, T., & Nardino, M. (2021). MGIDI: toward an effective multivariate selection in biological experiments. *Bioinformatics*, 37(10), 1383-1389.