

Enhancement of the genetic diversity and durability to stripe rust resistance in wheat genotypes

Atef Shahin¹; Adel Hagrass²; Ahmed Elfanah² and Aladdin Hamwieh³ ¹Wheat Dis. Res. Dept., Agric. Res. Center, Institute of Plant Pathology, ARC, Egypt ²Wheat Research Department, Field Crops Research Institute (FCRI), Agriculture Research Centre (ARC), Egypt.

 ³Biotechnologist, Biodiversity and Integrated Gene Management, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box: 2416, Giza, Egypt. Corresponding author: a.a.shahin@hotmail.com

2021 BGRI Technical Workshop

Introduction

The importance of stripe (yellow) rust, caused by *Puccinia striiformis* f. sp. *tritici* (*Pst*), has increased destructively worldwide during the last decades in wheat (*Triticum aestivum*). In addition, the detection of the new races indicated continual changes of virulence in the *Pst* pathotypes population in Egypt. Breeding for resistance is still the most economic and necessary method for controlling the disease. Durability to stripe rust resistance is a kind of genetic resistance that, quantitatively inherited, race nonspecific (general). This type of resistance hopes to be for a long period, over a wide range of environments and against the broad-spectrum of the pathogen's races. The objective of this study was to understand the genetic bases of durability to stripe rust resistance in Egyptian hexaploid wheat.

Materials and Methods

A filed study was conducted at Sakha Agricultural Research Station during 2018-2021 wheat seasons to enhance stripe rust resistance of the some Egyptian bread wheat cultivars; Misr2, Giza 160, Giza 168 and Sids12 using the four parents; Jupateco 73 R, Opata 85, Anza, and Pavon 76 carrying the different durability resistant genes. In addition to identify of durability resistance genes *Yr's* by molecular marker in early generation of crosses.

Results and Discussion

The wheat genotypes showed a wide range of rust responses during the 2019 to 2020 growing seasons. Adult plant response to stripe rust for Misr2, Giza 160, Giza 168 and Sids12 cultivars, the four parents; Jupateco 73 R, Opata 85, Anza, and Pavon 76 and their eight F_1 crosses during 2019/2020 season are presented in Table 1.

Over 200 F₂ plants from each cross were scored for stripe rust field response during the 2020/2021 growing season. F₂ population indicated that the cross (Misr2/Opata) was segregated fitting the expected ratios 57(R): 7(S), while cross (Giza 168/Pavon 76) were observed phenotypic ratios fitted the theoretical expected ratios, 63(R) : 1(S). On the other hand, the cross (Giza168/Anza) showed no segregation and was directed to the side of dominance of resistance indicating the dominance of the durability of resistance. Genetic analysis have been conducted based on F1, and F2 of crosses. The results demonstrated the di-genic and tri-genic control of stripe rust resistance against the Pst pathotypes population (Ragab et al., 2020). The difference of segregation ratios indicate that there were different types of epistatic interactions (Table 2). Genotyping by molecular markers indicated the presence gene Lr34/Yr18/Sr57/Pm38 in the majority of resistant F2 plants derived from the cross (Misr2/Opata. While the gene Lr46/Yr29/Sr58/Pm39 was present in cross (Giza 168/Pavon 76) (Fig1).

Table 1. The adult plant field response to stripe rust under fieldcondition for the four Egyptian bread wheat cultivars,four monogenic lines and their 16 F_1 crosses 2019/2020season.

C	Adult plant reaction				
Cross name	Pi	P ₂	Fi		
Misr2/ Jupateco 73R	40S	60MS	60MSS		
Misr2/ Opata 86	40S	10MR	20MR		
Misr2/ Anza	40S	10MRMS	30MS		
Misr2/ Pavion 76	40S	20MSS	30MSS		
Giza 168/ Jupateco 73R	30MSS	30MS	30MS		
Giza 168/ Opata 86	30MSS	10MR.	20MR		
Giza 168/ Anza	30MSS	10MRMS	20MRMS		
Giza 168/ Pavion 76	30MSS	MSS	10MRMS		
Sids 12/ Jupateco 73R	60S	60MSS	10MRMS		
Sids 12/ Opata 86	60S	10MR	10R.		
Sids 12/ Anza	60S	10MRMS	20MRMS		
Sids 12/ Pavion 76	60S	20MSS	30MSS		
Giza 160/ Jupateco 73R	80S	60MS	60MS		
Giza 160/ Opata 86	80S	10MR	10MR		
Giza 160/Anza	80S	10MRMS	10MS		
Giza 160/ Pavion 76	80S	20MSS	20MSS		

Table 2. Adult plant response for stripe rust, observed hypothetical ratios, chi-square and probability values for 16 wheat F₂ populations inoculated with Pst under field conditions during 2020/2021.

Cross	No. of	No. of plants		Hanathati	Chi-	
	R	s	Total	cal ratio	Squared (7 ²)	<i>R</i> value*
Misr2/Jupateco 73R	170	40	210	13:3	0.0122	0.900-0.750
Misr2/Opata 85	180	25	205	57:7	0.5990	0.500-0.250
Misr2/Anza	210	10	220	15:1	1.0909	0.900-0.750
Misr2/Pavion76	170	45	215	13:3	0.6708	0.010-0.025
Giza 168/Jupateco 73R.	35	180	215	3:13	0.2050	0.750-0.250
Giza 168/Opata 85	183	18	201	15 : 1	2.4600	0.250-0.100
Giza 168 /Anza	205	0	205	1:0	-	>0.99
Giza 168 /Pavion76	210	5	215	63:1	0.8140	0.500-0.250
Sids12/Jupateco 73R	130	80	210	9:7	2.7286	0.750-0.500
Sids12/Opata 85	150	70	220	13:3	1.3978	0.900-0.750
Sids 12/Anza	145	65	210	11:5	0.0087	0.950-0.900
Sids 12/Pavion76	90	125	215	7:9	0.3119	0.750-0.500
Giza 160/Jupateco 73R	95	125	220	7:9	0.0289	0.750-0.500
G1za 160/Opata 85	142	68	210	11: 11	0.1250	0.750-0.500
Giza 160/Anza	50	170	220	1:3	0.6061	0.250-0.010
Giza 160/Pavion/6	80	125	205	7:9	1.8602	0.250-0.100
	S F	R			RS	R
A				в		
-					14 DO 1	50
=	P1 P	2 F2		=	P1 P2 1	F2
=					STOP	
=						-
150		-	242	→ 		
	and the second second	-				

Fig. 1. Amplification products of PCR using A. Yr18 marker (150bp) in F_2 of cross; Misr2/Opata and B. Yr29 marker (242bp) in F_2 of cross; Giza168/Pavon 76.

Selected Reference

Kh.E. Ragab, A.A. Shahin and S.M. Abdelkhalik (2020). Efficiency of yellow rust resistance genes Yr5, 10, 15 and Sp in improving the two Egyptian bread wheat cultivars Sids 12 and Gemmeiza 11. Egypt. J. Agron. Vol. 42, No.3, pp. 249-261.